Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Int J Pharm ; 658: 124213, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729382

RESUMEN

Safe and effective Cu2+ supplementation in local lesion is crucial for minimizing toxicity of DSF-based chemotherapy. Targeted delivery of Cu2+ appears more promising. Intraperitoneal chemotherapy for peritoneal carcinoma (PC) establishes "face-to-face" contact between targeted nanocarriers and tumor tissue. Herein, this study developed a biodegradable, injectable thermosensitive hydrogel that coencapsulating DSF submicroemulsion (DSF-SE) and folate-modified liposome loading glycyrrhizic acid-Cu (FCDL). FCDL acted as 'beneficial horse' to target the tumor-localized folate receptor, thus liberating Cu2+ in tumor nidus. The prepared FCDL and DSF-SE were found with uniform sizes (160.2 nm, 175.4 nm), low surface charge (-25.77 mV, -16.40 mV) and high encapsulation efficiency (97.93 %, 90.08 %). In vitro drug release profile of FCDL, DSF-SE and FCDL&DSF-SE@G followed a sustained release pattern. And the release behavior of Cu2+ from FCDL was pH-related, i.e., Cu2+ was released faster under acidic condition. When FCDL and DSF-SE were loaded into an PLGA-PEG-PLGA-based hydrogel system, FCDL&DSF-SE@G was formed to ensure separated delivery of Cu2+ and DSF in space but synchronized release over time. The rheology experiment showed a satisfactory gelling temperature of 32.7 °C. In vitro cytotoxicity study demonstrated that FCDL&DSF-SE@G significantly lowered the IC50 of free Cu2+/DSF, Cu2+/DSF hydrogel and non-targeted analogue by almost 70 %, 65 % and 32 %, respectively. Accordingly, in tumor-bearing mice, FCDL&DSF-SE@G augmented the tumor inhibition rates for the same formulations by 352 %, 145 % and 44 %, respectively. The main mechanism was attributed to higher uptake of FCDL and DSF-SE, resulting in increased Cu(DDTC)2 formation, ROS production and cell apoptosis. In conclusion, this targeted nanotherapy approach with dual-nanocarriers loaded hydrogel system, with its focus on face-to-face contact between nanocarriers and tumor tissues in the peritoneal cavity, holds significant promise for intraperitoneal chemotherapy in PC.

2.
Int J Pharm ; 658: 124196, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703933

RESUMEN

The aim of this study was to prepare nintedanib nanocrystals (BIBF-NCs) to lower the solubility of the drug in the stomach, maintain the supersaturation of the drug in the intestine, and improve the oral absorption of nintedanib (BIBF). In this study, BIBF-NCs were prepared by acid solubilization and alkaline precipitation following nano granding method, with a particle size of 290.80 nm and a zeta potential of -49.13 mV. Subsequently, Nintedanib enteric-coated nanocrystals (BIBF-NCs@L100) were obtained by coating with Eudragit L100. The microscopic morphology, crystalline characteristics, stability, and in vitro dissolution of BIBF-NCs and BIBF-NCs@L100 were also studied. In addition, the in vivo pharmacokinetic behaviors of Samples prepared according to the prescription process of commercially available soft capsules (soft capsules), BIBF-NCs, and BIBF-NCs@L100 were further investigated. The results showed that the oral bioavailability of BIBF-NCs and BIBF-NCs@L100 were increased by 1.43 and 2.58 times, compared with that of the soft capsules. BIBF-NCs@L100 effectively reduced the release of BIBF in the formulation in the stomach, allowing more drug to reach the intestine in the form of nanocrystals, maintaining the supersaturation in the intestine, thereby improving the oral bioavailability of the drug.

3.
Int J Pharm ; 654: 123991, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38471578

RESUMEN

The degradation of peptide drugs limits the application of peptide drug microspheres. Structural changes of peptides at the water-oil interface and the destruction of their spatial structure in the complex microenvironment during polymer degradation can affect drug release and in vivo biological activity. This study demonstrates that adding hydroxyethyl starch (HES) to the internal aqueous phase (W1) significantly enhances the stability of semaglutide and optimizes its release behavior in PLGA microspheres. The results showed that this improvement was due to a spontaneous exothermic reaction (ΔH = -132.20 kJ mol-1) facilitated by hydrogen bonds. Incorporating HES into the internal aqueous phase using the water-in-oil-in-water (W1/O/W2) emulsion method yielded PLGA microspheres with a high encapsulation rate of 94.38 %. Moreover, microspheres with HES demonstrated well-controlled drug release over 44 days, unlike the slower and incomplete release in microspheres without HES. The optimized h-MG2 formulation achieved a more complete drug release (83.23 %) and prevented 30.65 % of drug loss compared to the HES-free microspheres within the same period. Additionally, the optimized semaglutide microspheres provided nearly three weeks of glycemic control with adequate safety. In conclusion, adding HES to the internal aqueous phase improved the in-situ drug stability and release behavior of semaglutide-loaded PLGA microspheres, effectively increasing the peptide drug payload in PLGA microspheres.


Asunto(s)
Péptidos Similares al Glucagón , Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Láctico/química , Ácido Poliglicólico/química , Estabilidad de Medicamentos , Microesferas , Composición de Medicamentos/métodos , Tamaño de la Partícula , Péptidos , Agua , Almidón/química
4.
J Control Release ; 369: 114-127, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521167

RESUMEN

This research introduces an innovative solution to address the challenges of bacterial keratitis and alkali burns. Current treatments for bacterial keratitis and alkali burns rely on the frequent use of antibiotics and anti-inflammatory eye drops. However, these approaches suffer from poor bioavailability and fluctuating concentrations, leading to limited efficacy and potential drug resistance. Our approach presents an adaptive drug-releasing contact lens responsive to reactive oxygen species (ROS) at ocular inflammation sites, synchronously releasing Levofloxacin and Diclofenac. During storage, minimal drug release occurred, but over 7 days of wear, the lens maintained a continuous, customizable drug release rate based on disease severity. This contact lens had strong antibacterial activity and biofilm prevention, effectively treating bacterial keratitis. When combined with autologous serum, this hydrophilic, flexible lens aids corneal epithelial regeneration, reducing irritation and promoting healing. In summary, this ROS-responsive drug-releasing contact lens combines antibacterial and anti-inflammatory effects, offering a promising solution for bacterial keratitis and alkali burns.


Asunto(s)
Antibacterianos , Diclofenaco , Queratitis , Levofloxacino , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Animales , Levofloxacino/uso terapéutico , Levofloxacino/administración & dosificación , Diclofenaco/administración & dosificación , Diclofenaco/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Liberación de Fármacos , Biopelículas/efectos de los fármacos , Lentes de Contacto , Conejos , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/tratamiento farmacológico , Humanos , Sistemas de Liberación de Medicamentos , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/terapia
5.
Int J Pharm ; 654: 123899, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38365068

RESUMEN

In this study, a novel cabazitaxel solid self-emulsifying drug delivery system (CTX S-SEDDS) was developed by solvent evaporation and liquid-solid compression technology, which overcame the limitations of the traditional SEDDS and improved the oral bioavailability. From the results of solubility, pseudo-ternary phase diagram, and single-factor analysis, Tween 80 (surfactant), Tricaprylin (oil), and Glyceryl monooleate (oil) with the ratio of 30:55:15 showed optimized particle size (140.87 nm), short emulsification and high cabazitaxel (CTX) loading capacity (50 mg·g-1). Based on the liquid-solid compression mathematical model, Syloid XDP3050 was determined as carrier material and Syloid 244FP as coating material. The prepared CTX S-SEDDS showed excellent flowability, tabletability, and reconstitution property. In vivo pharmacokinetics in rats demonstrated the absolute bioavailability of CTX S-SEDDS (17.27 %) was significantly enhanced compared with CTX solution (1.69 %), which was close to that of CTX-SEDSS (20.48 %). Lymphatic absorption was verified by in vitro imaging to be an important absorption route for self-emulsifying preparations. These results suggested that CTX S-SEDDS could enhance oral bioavailability of poorly water-soluble drug cabazitaxel while avoiding SEDDS limitations and harnessing the dual advantages of solid and liquid preparations.


Asunto(s)
Sistemas de Liberación de Medicamentos , Taxoides , Ratas , Animales , Emulsiones/farmacocinética , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos/métodos , Solubilidad , Administración Oral
6.
Expert Opin Drug Deliv ; 21(1): 169-185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38224039

RESUMEN

BACKGROUND: Exendin-4 (Ex4) is a promising drug for diabetes mellitus with a half-life of 2.4 h in human bodies. Besides, the Ex4 formulations currently employed in the clinic or under development have problems pertaining to stability. In this study, palmitic acid-modified Ex4 (Pal-Ex4) was prepared and purified to extend the half-life of Ex4. In addition, Pal-Ex4-MVLs were further designed and optimized as a long-acting delivery system for intramuscular injection. METHODS: Pal-Ex4 was encapsulated within multivesicular liposomes (MVLs) via a two-step double emulsification process. The formulated products were then assessed for their vesicle size, encapsulation efficiency, and in vitro and in vivo. RESULTS: Pal-Ex4-MVLs with a notable encapsulation efficiency of 99.18% were successfully prepared. Pal-Ex4-MVLs, administered via a single intramuscular injection in Sprague-Dawley rats, sustained stable plasma concentrations for 168 h, presenting extended half-life (77.28 ± 12.919 h) and enhanced relative bioavailability (664.18%). MVLs protected Ex4 through providing stable retention and slow release. This approach considerably improved the in-situ stability of the drug for intramuscular administration. CONCLUSIONS: The combination of palmitic acid modification process with MVLs provides dual protection for Ex4 and can be a promising strategy for other hydrophilic protein/polypeptide-loaded sustained-release delivery systems with high drug bioactivity.


Asunto(s)
Liposomas , Ácido Palmítico , Ratas , Animales , Humanos , Exenatida , Inyecciones Intramusculares , Preparaciones de Acción Retardada , Ratas Sprague-Dawley
7.
Int J Pharm ; 652: 123800, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38218507

RESUMEN

The ancient anti-alcohol drug disulfiram (DSF) has gained widespread attention for its highly effective anti-tumor effects in cancer treatment. Our previous studies have developed liposome of Cu (DDC)2 to overcome the limitations, like the poor water solubility. However, Cu (DDC)2 liposomes still have shown difficulties in severe hemolytic reactions at high doses and systemic toxicity, which have limited their clinical use. Therefore, this study aims to exploratively investigate the feasibility of using DSF or DDC in combination also can chelate Zn2+ to form zinc diethyldithiocarbamate (Zn (DDC)2). Furthermore, this study prepared stable and homogeneous Zn (DDC)2 liposomes, which were able to be released in the tumor microenvironment (TME). The released Zn (DDC)2 was converted to Cu (DDC)2 with the help of endogenous Cu2+-switch enriched in the TME, which has a higher stability constant compared with Zn (DDC)2. In other words, the Cu2+-switch is activated at the tumor site, completing the conversion of the less cytotoxic Zn (DDC)2 to the more cytotoxic Cu (DDC)2 for effective tumor therapy so that the Zn (DDC)2 liposomes in vivo achieved the comparable therapeutic efficacy and provided a safer alternative to Cu (DDC)2 liposomes in cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Liposomas/uso terapéutico , Ditiocarba/uso terapéutico , Disulfiram , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Zinc , Cobre/uso terapéutico , Microambiente Tumoral , Descarboxilasas de Aminoácido-L-Aromático/uso terapéutico
8.
Colloids Surf B Biointerfaces ; 232: 113599, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857183

RESUMEN

Interventional therapies are increasingly used in clinical trials for hepatocellular carcinoma (HCC). Sorafenib is the front-line remedy for HCC, however, chemoresistance occurs immutably and affects the effectiveness of treatment. In a previous study, a norcantharidin liposome emulsion hybrid (NLEH) delivery system for HCC was developed. This study aims to examine the therapeutic effects of the combination of intratumoral injection of NLEH and sorafenib in treating HCC. Sorafenib combined with NLEH activated the apoptosis pathway by synergistically upregulating caspase-9, promoting cytotoxicity, apoptosis (64.57%), and G2/M cell cycle arrest (48.96%). Norcantharidin could alleviate sorafenib resistance by counteracting sorafenib-induced phosphorylation of Akt. Additionally, intratumoral injection of NLEH exhibited a sustained accumulation in the tumor within 24 h and didn't distribute to other major organs. Intratumoral injection of NLEH in combination with oral sorafenib displayed the most potent tumor growth inhibitory effect (77.91%) in vivo. H&E staining results and the indicators of the renal and liver function tests demonstrated the safety of this combination therapy. Overall, these results showed that intratumoral injection of NLEH in combination with oral sorafenib treatment represented a rational potential therapeutic option for HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Liposomas/farmacología , Neoplasias Hepáticas/patología , Emulsiones/farmacología , Inyecciones Intralesiones , Línea Celular Tumoral , Apoptosis , Proliferación Celular
9.
Int J Pharm ; 646: 123500, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37820944

RESUMEN

As the only Food and Drug Administration (FDA)-approved dual-encapsulation liposome injection for treating Acute myeloid leukemia (AML), CPX-351 outperforms the standard chemotherapy treatment "DA 7 + 3″ in terms of clinical effectiveness. Although research on dual-loaded liposomes has increased in recent years, little attention has been paid to their preparation, which can affect their quality, efficacy, and safety. This study explored various preparation processes to create the cytarabine/daunorubicin co-loaded liposome (the Cyt/Daun liposome) and eventually settled on two methods: the sequential loading approach, thin film hydration-extrusion-copper ion gradient, and the simultaneous encapsulation technique, copper ion gradient-concentration gradient. Different preparation methods resulted in different particle sizes and encapsulation efficiencies; the two aforementioned preparation processes generated dual-loaded liposomes with comparable physicochemical properties. The sequential encapsulation technique was selected for the subsequent research owing to its higher encapsulation efficiency prior to purification; the prepared Cyt/Daun liposomes had small and uniform particle size (108.6 ± 1.02 nm, Polydispersity index (PDI) 0.139 ± 0.01), negative charge (-(60.2 ± 1.15) mV), high drug encapsulation efficiency (Cyt 88.2 ± 0.24 %, Duan 94.2 ± 0.45 %) and good plasma stability. To improve its storage stability, the Cyt/Daun liposome was lyophilized (-40 °C for 4 h, maintained for 130 min, and dried for 1200 min) using sucrose-raffinose (mass ratio 7:3; glycolipid ratio 4:1, w/w) as a lyoprotectant. The lyophilized liposomes were purple cakes, redissolved rapidly with insignificant alterations in particle size and encapsulation efficiency, and possessed well storage stability. The pharmacokinetic and tissue distribution studies demonstrated that the Cyt/Daun liposome could achieve long circulation and maintain synergic proportions of drugs within 24 h, increasing the accumulation of drugs at tumor sites. Furthermore, the in vitro/in vivo pharmacodynamic studies confirmed its good anti-tumor activity and safety.


Asunto(s)
Leucemia Mieloide Aguda , Liposomas , Humanos , Liposomas/uso terapéutico , Cobre/uso terapéutico , Daunorrubicina , Leucemia Mieloide Aguda/tratamiento farmacológico , Citarabina
10.
Int J Biol Macromol ; 253(Pt 8): 127690, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37898254

RESUMEN

Docetaxel (DTX) has become one of the most important cytotoxic drugs to treat cancer; nevertheless, its poor hydrophilicity and non-specific distribution of DTX lead to detrimental side effects. In this article, we devised carboxymethylcellulose (CMC)-conjugated polymeric prodrug micelles (mPEG-CMC-DTX PMs) for DTX delivery. The ester-bonded polymeric prodrug, mPEG-CMC-DTX, was synthesized and exhibited the capacity for self-assembling into polymeric micelles. The CMC is profusely substituted and acetylated to promote the coupling rate of DTX. Covalent binding of DTX and CMC through an ester bond can be hydrolyzed to dissociate the bond under the action of esterase in the tumor. The mPEG-CMC-DTX PMs displayed promoted drug loading (>50 %, wt), commendable stability, and sustained release behavior in vitro. The gradual release of the prodrug amplified the selectivity of cytotoxicity between normal cells and tumor cells, mitigating the systemic toxicity of mPEG-CMC-DTX PMs and enabling dose intensification. Notably, mPEG-CMC-DTX PMs demonstrated a superior antitumor efficacy and low systemic toxicity due to the elevated tolerance dosage (even at 40 mg/kg DTX). In summation, mPEG-CMC-DTX PMs harmonized the antitumor efficacy and toxicity of DTX. In essence, innovative perspectives for the rational design of CMC-conjugated polymeric prodrug micelles for the delivery of potently toxic drugs were proffered.


Asunto(s)
Antineoplásicos , Profármacos , Docetaxel/farmacología , Micelas , Profármacos/farmacología , Carboximetilcelulosa de Sodio , Taxoides/química , Polietilenglicoles/química , Antineoplásicos/química , Polímeros/química , Ésteres , Línea Celular Tumoral
11.
Biomater Sci ; 11(19): 6619-6634, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37608695

RESUMEN

Cancer vaccine-based immunotherapy has great potential; however, the vaccines have been hindered by the immunosuppressive tumor microenvironment (TME). In this study, dual-responsive PEG-lipid polyester nanoparticles (PEG BR647-NPs) for tumor-targeted delivery were proposed. PEG BR647-NPs containing the model tumor-associated antigen (TAA) OVA and the signal transduction and activator of transcription 3 (STAT3) siRNA were delivered to the tumor. The PEG BR647-NPs were internalized by tumor-associated dendritic cells (TADCs), where the TAA and siRNA were released into the cytoplasm via the endo/lysosome escape effect. The released OVA was presented by the major histocompatibility complex class I to activate T cells, and the released STAT3 siRNA acted to relieve TADC dysfunction, promote TADC maturation, improve antigen-presenting ability, and enhance anticancer T cell immunity. Meanwhile, the PEG BR647-NPs were ingested by tumor cells, killing them by the pro-apoptosis effect of STAT3 siRNA. Moreover, PEG BR647-NPs could reduce the proportion of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in tumors and abrogate immunosuppression. The integration of relieved TADC dysfunction, promoted TADC maturation, enhanced antigen cross-presentation, abrogated immunosuppression, and improved pro-apoptosis effect boosted the vaccination for tumor immunotherapy. Thus, PEG BR647-NPs efficiently delivered the vaccine and STAT3 siRNA to the tumor and modulated immunosuppressive TME, thus providing better antitumor effects.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , ARN Interferente Pequeño , Poliésteres/farmacología , Microambiente Tumoral , Células Dendríticas , Neoplasias/patología , Antígenos de Neoplasias , Inmunoterapia , Presentación de Antígeno , Lípidos
12.
Adv Drug Deliv Rev ; 200: 115044, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37541623

RESUMEN

During the last two decades, an increasing number of reports have pointed out that the immunogenicity of polyethylene glycol (PEG) may trigger accelerated blood clearance (ABC) and hypersensitivity reaction (HSR) to PEGylated nanoparticles, which could make PEG modification counterproductive. These phenomena would be detrimental to the efficacy of the load and even life-threatening to patients. Consequently, further elucidation of the interplay between PEGylated nanoparticles and the blood immune system will be beneficial to developing and applying related formulations. Many groups have worked to unveil the relevance of structural factors, dosing schedule, and other factors to the ABC phenomenon and hypersensitivity reaction. Interestingly, the results of some reports seem to be difficult to interpret or contradict with other reports. In this review, we summarize the physiological mechanisms of PEG-specific immune response. Moreover, we speculate on the potential relationship between the induction phase and the effectuation phase to explain the divergent results in published reports. In addition, the role of nanoparticle-associated factors is discussed based on the classification of the action phase. This review may help researchers to develop PEGylated nanoparticles to avoid unfavorable immune responses based on the underlying mechanism.


Asunto(s)
Liposomas , Nanopartículas , Humanos , Liposomas/química , Inmunoglobulina M , Polietilenglicoles/química , Sistema Inmunológico , Nanopartículas/química
13.
J Control Release ; 361: 493-509, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37572964

RESUMEN

Excessive reactive oxygen species (ROS) and stressed inflammatory response are major characteristics of ulcerative colitis, which cause disease progression and aggravation. Herein, a novel mesoporous cerium oxide nanozymes (MCN) was designed and then loaded with Myeloid differentiation factor-88 (MyD88) inhibitor for synergistic treatment of colitis by scavenging ROS and regulating inflammation. This innovative MCN with average particle size of 200.7 nm, specific surface area of 119.78 m2/g and mesopores of 4.47 nm not only exhibited excellent SOD-like and CAT-like activities to scavenge ROS but also could act as a carrier to load MyD88 inhibitor, TJ-M2010-5, (abbreviated as TJ-5) into their mesopores, achieving the effect of 'two birds with one stone'. Besides, the modification of dextran sulfate sodium (TJ-5/MCN/DSS) increased the internalization of nanozymes into activated macrophages and enhanced in vitro anti-inflammatory ability. To enhance colon targeting, we coated TJ-5/MCN/DSS with the enteric material Eudragit S100, preventing premature release or absorption of the drug in the gastrointestinal tract after oral administration. The results demonstrated that TJ-5/MCN/DSS/Eudragit not only achieved delayed drug release and improved colon targeting but also exhibited optimal therapeutic efficacy in colitis mice. Mechanistically, the MCN-mediated ROS scavenging and TJ-5-mediated MyD88 blockade synergistically inhibited the NF-κB signaling pathway, thereby reducing the inflammatory response. Importantly, TJ-5/MCN/DSS/Eudragit did not induce systemic toxicity. In conclusion, our work not only presents a novel carrier capable of scavenging ROS but also provides proof of concept for the synergistic treatment of colitis using this carrier in combination with MyD88 inhibitors. This study proposes a safe and efficient strategy for targeting ROS-associated inflammation.


Asunto(s)
Colitis Ulcerosa , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colon , Sulfato de Dextran/farmacología , Sulfato de Dextran/uso terapéutico , Modelos Animales de Enfermedad , Inflamación , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Mol Pharm ; 20(10): 5125-5134, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37647098

RESUMEN

Myelosuppression is a prevalent and potentially life-threatening side effect during chemotherapy. As the main active component of ginseng, 20(S)-protopanaxadiol (PPD) is capable of relieving myelosuppression by restoring hematopoiesis and immunity. In this study, PPD was encapsulated in human albumin nanoparticles (PPD-HSA NPs) by nanoparticle albumin-bound (Nab) technology for intramuscular injection to optimize its pharmacokinetic properties and promote recovery of myelosuppression. The prepared PPD-HSA NPs had a particle size of about 280 nm with a narrow size distribution. PPD dispersed as an amorphous state within the PPD-HSA NPs, and the NPs exhibited in vitro sustained release behavior. PPD-HSA NPs showed a favorable pharmacokinetic profile with high absolute bioavailability, probably due to the fact that NPs entered into the blood circulation via lymphatic circulation and were eliminated slowly. In vivo distribution experiments demonstrated that PPD-HSA NPs were mainly distributed in the liver and spleen, but a strong fluorescence signal was also found in the inguinal lymph node, indicating drug absorption via a lymph route. The myelosuppressive model was established using cyclophosphamide as the inducer. Pharmacodynamic studies confirmed that PPD-HSA NPs were effective in promoting the level of white blood cells. Moreover, the neutrophil and lymphocyte counts were significantly higher in the PPD-HSA NPs group compared with the control group. This preliminary investigation revealed that PPD-HSA NPs via intramuscular administration may be an effective intervention strategy to alleviate myelosuppression.

15.
Biomater Sci ; 11(18): 6267-6279, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37545202

RESUMEN

Chemodynamic therapy (CDT) is an emerging oncological treatment that eliminates tumor cells by generating lethal hydroxyl radicals (˙OH) through Fenton or Fenton-like reactions within tumors. However, the effectiveness of CDT is limited by the overexpression of glutathione (GSH) and low reaction efficiency in the tumor microenvironment (TME). To address these challenges and enhance tumor treatment, we developed a novel pH-activatable metal ion-drug coordinated nanoparticle (Cu-AXB NPs) system, incorporating a CDT agent (Cu2+) and a chemotherapeutic agent (axitinib, AXB). The obtained Cu-AXB NPs exhibited exceptional characteristics, including ultrahigh drug loading capacity (87.55%) and an average size of 180 nm. These nanoparticles also demonstrated excellent plasma stability and pH-responsive drug release, enabling prolonged circulation in the bloodstream and targeted therapy at weakly acidic tumor sites. Upon release, AXB acted as a chemotherapeutic agent, effectively eliminating tumor cells, while Cu2+ ions were reduced to Cu+ by GSH, further generating toxic ˙OH with hydrogen peroxide (H2O2) for CDT through a Fenton-like reaction. Additionally, the Cu-AXB NPs efficiently disrupted the copper metabolic balance and increased the intracellular Cu content, further amplifying the therapeutic impact of CDT. In vitro studies assessing cytotoxicity and apoptosis confirmed the superior tumor cell-killing efficacy of the Cu-AXB NPs. This enhanced efficacy can be attributed to the synergistic effect of CDT and chemotherapy. Moreover, the Cu-AXB NPs exhibited excellent tumor targeting capabilities, resulting in significant tumor inhibition (77.53% inhibition) while maintaining favorable biocompatibility in tumor-bearing mice. In conclusion, this study presents a promising and safe strategy for cancer therapy by combining CDT with chemotherapy, offering a potential breakthrough in the field of oncology.


Asunto(s)
Nanopartículas Multifuncionales , Nanopartículas , Neoplasias , Animales , Ratones , Cobre , Axitinib , Peróxido de Hidrógeno , Glutatión , Microambiente Tumoral , Concentración de Iones de Hidrógeno , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico
16.
J Control Release ; 360: 818-830, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37481212

RESUMEN

Corneal neovascularization (CNV) badly damages the corneal transparency, resulting in visual disturbance and blindness. The frequent administration of glucocorticoid eye drops in clinical increases the possibility of side effects and reduces patient compliance. Considering CNV is often accompanied by an increase in ROS production, a ROS-responsive monomer 2-(methylthio)ethyl methacrylate was introduced into the matrix as a "gating switch". The prepared dexamethasone contact lenses (MCLs@Dex) showed a significant H2O2-responsive release for 168 h. To avoid corneal hypoxia and neovascularization caused by long-term wearing, high­oxygen-permeability fluorosiloxane materials were incorporated. The oxygen permeability of MCLs@Dex was 4 times that of commercially available hydrogel contact lenses and had ultra-low protein adsorption, which meets the requirements of long-term wearing. In vivo pharmacokinetic studies showed that MCLs@Dex increased the mean residence time by 19.7 times and bioavailability by 2.29 times compared with eye drops, validating the ROS response and sustained release properties. More importantly, MCLs@Dex had satisfactory effects on reducing inflammation and decreasing the related cytokines and oxidative stress levels, and demonstrated significant inhibition of neovascularization, with a suppression rate of 76.53% on the 14th day. This responsive drug delivery system provides a promising new method for the safe and effective treatment of ocular surface diseases.


Asunto(s)
Lentes de Contacto , Neovascularización de la Córnea , Humanos , Adulto , Neovascularización de la Córnea/tratamiento farmacológico , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Inflamación/tratamiento farmacológico , Oxígeno , Soluciones Oftálmicas
17.
Expert Opin Drug Deliv ; 20(7): 1015-1031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37452715

RESUMEN

OBJECTIVES: Metastasis is still one of the main obstacles in the treatment of breast cancer. This study aimed to develop disulfiram (DSF) and doxorubicin (DOX) co-loaded nanoparticles (DSF-DOX NPs) with enzyme/pH dual stimuli-responsive characteristics to inhibit breast cancer metastasis. METHODS: DSF-DOX NPs were prepared using the amphiphilic poly(ε-caprolactone)-b-poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) (PCL-b-PGlu-g-mPEG) copolymer by a classical dialysis method. In vitro release tests, in vitro cytotoxicity assay, and anti-metastasis studies were conducted to evaluate pH/enzyme sensitivity and therapeutic effect of DSF-DOX NPs. RESULTS: The specific pH and enzyme stimuli-responsiveness of DSF-DO NPs can be attributed to the transformation of secondary structure and the degradation of amide bonds in the PGlu segment, respectively. This accelerated drug release significantly increased the cytotoxicity to 4T1 cells. Compared with the control group, the DSF-DOX NPs showed a strong inhibition of in vitro metastasis with a wound healing rate of 36.50% and a migration rate of 18.39%. Impressively, in vivo anti-metastasis results indicated that the metastasis of 4T1 cells was almost completely suppressed by DSF-DOX NPs. CONCLUSION: DSF-DOX NPs with controllable tumor site delivery of DOX and DSF were a prospectively potential strategy for metastatic breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Nanopartículas , Humanos , Femenino , Disulfiram/farmacología , Disulfiram/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Polietilenglicoles/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Portadores de Fármacos/química , Línea Celular Tumoral
18.
J Control Release ; 360: 734-746, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37454913

RESUMEN

Various attributes of micelles, such as PEG density and particle size, are considered to be related to blood clearance. The structural stability of micelles is another key attribute that will affect the in vivo fate. This study employed fluorescence resonance energy transfer (FRET) analysis to guide the preparation of polymeric micelles with different structural stability. Micelles prepared using copolymers with longer hydrophobic blocks showed higher structural stability; emulsification was a better method than nanoprecipitation to prepare stable micelles. The fast chain exchange kinetics and the high-water content of micellar cores explained the low structural stability of those micelles. Moreover, this study highlighted the importance of structural stability that affected blood clearance in concert with PEG length and particle size. One-third of the small and stable micelles were detected in the blood 24 h after injection. While unstable micelles would be cleared from the circulation within 4 h. Notably, there would be a threshold of structural stability. Micelles with structural stability below this threshold were quickly cleared even if they possessed a longer PEG length and a smaller size. In contrast, higher structural stability allowed polymeric micelles to maintain higher integrity in vivo and enhance tumor accumulation and anti-tumor efficacy. In conclusion, this study systematically analyzed the importance of the structural stability of micelles on the in vivo fate.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Micelas , Polietilenglicoles/química , Tamaño de la Partícula , Cinética , Polímeros/química , Portadores de Fármacos/química
19.
Nanoscale ; 15(20): 8948-8971, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37129051

RESUMEN

Chemodynamic therapy (CDT), a novel therapeutic approach based on Fenton (Fenton-like) reaction, has been widely employed for tumor therapy. This approach utilizes Fe, Cu, or other metal ions (Mn, Zn, Co, or Mo) to react with the excess hydrogen peroxide (H2O2) in tumor microenvironments (TME), and form highly cytotoxic hydroxyl radical (˙OH) to kill cancer cells. Recently, nanoscale metal-organic frameworks (nMOFs) have attracted considerable attention as promising CDT agents with the rapid development of cancer CDT. This review focuses on summarizing the latest advances (2020-2022) on the design of nMOFs as nanomedicine for CDT or combination therapy of CDT and other therapies. The future development and challenges of CDT are also proposed based on recent progress. Our group hopes that this review will enlighten the research and development of nMOFs for CDT.


Asunto(s)
Antineoplásicos , Estructuras Metalorgánicas , Neoplasias , Humanos , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/uso terapéutico , Línea Celular Tumoral , Peróxido de Hidrógeno/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Metales , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
20.
Carbohydr Polym ; 312: 120838, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059563

RESUMEN

The oral route has long been recognized as the most preferred route for drug delivery as it offers high patient compliance and requires minimal expertise. Unlike small molecule drugs, the harsh environment of the gastrointestinal tract and low permeability across the intestinal epithelium make oral delivery extremely ineffective for macromolecules. Accordingly, delivery systems that are rationally constructed with suitable materials to overcome barriers to oral delivery are exceptionally promising. Among the most ideal materials are polysaccharides. Depending on the interaction between polysaccharides and proteins, the thermodynamic loading and release of proteins in the aqueous phase can be realized. Specific polysaccharides (dextran, chitosan, alginate, cellulose, etc.) endow systems with functional properties, including muco-adhesiveness, pH-responsiveness, and prevention of enzymatic degradation. Furthermore, multiple groups in polysaccharides can be modified, which gives them a variety of properties and enables them to suit specific needs. This review provides an overview of different types of polysaccharide-based nanocarriers based on different kinds of interaction forces and the influencing factors in the construction of polysaccharide-based nanocarriers. Strategies of polysaccharide-based nanocarriers to improve the bioavailability of orally administered proteins/peptides were described. Additionally, current restrictions and future trends of polysaccharide-based nanocarriers for oral delivery of proteins/peptides were also covered.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Preparaciones Farmacéuticas , Polisacáridos/química , Administración Oral , Péptidos , Portadores de Fármacos/química , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA