Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
RSC Adv ; 14(25): 17326-17337, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38813125

RESUMEN

In this work, polyethylene terephthalate (PET) and sewage sludge (SS) were co-hydrothermally carbonized to produce low-nitrogen solid fuels. To minimize the effect of nitrogen, this work introduces a co-hydrothermal carbonization method involving alkali (A), ultrasonic cell disruptor (UCC), and sodium dodecyl sulfate (SDS) for both individual and combined pretreatment of SS and PET. Comparative analysis of the products shows that the combined pretreatment with sodium dodecyl sulfate (SDS) and alkali (A) effectively disrupts the SS cell structure, leading to the loosening of stable extracellular polymeric substances (EPS). This condition is conducive to the release and hydrolysis of proteins during hydrothermal carbonization. Moreover, under conditions where PET serves both as an acid producer and a carbon source, and through parameter optimization at a temperature of 240 °C, reaction time of 2 h, PET addition of 20 wt%, and water addition of 0.6 g cm-3, a high-quality, low-nitrogen clean solid fuel was produced (N: 0.51 wt%, C: 19.10 wt%).

2.
Sci Total Environ ; 929: 172682, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663600

RESUMEN

Recycling of aqueous phase (AP) as a by-product after hydrothermal carbonization (HTC) of sewage sludge (SS) has been of interest. The combination of magnesium ammonium phosphate (MAP) or the so-called struvite crystallization and aqueous phase (AP) recirculation has great potential for resource recovery and hydrochar enhancement. In this study, both the aqueous phase of HTC after MAP recovery of NH4+-N (AP-MAP) and the untreated aqueous phase of HTC (AP-HTC) were reused for HTC of fresh SS, and both aqueous phases were recycled four times. The effects of the two AP cycles on the properties of AP and hydrochar at 200, 230, and 260 °C were studied, and the effect of temperature on the two AP cycles was similar. The hydrochar produced by the AP-MAP cycle had lower nitrogen content than that of the AP-HTC cycle due to the low ammonia nitrogen (NH4+-N) content, and the combustion performance was improved. MAP recovery reduces the accumulation of NH4+-N in the AP cycle and MAP is also a high-quality fertilizer. Therefore, the combination of MAP recovery and AP recycling provides a feasible technical approach for resource utilization, eutrophic AP treatment, and production of high-quality hydrochar in the HTC process of SS.

3.
RSC Adv ; 13(39): 27116-27124, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37701281

RESUMEN

Sewage sludge (SS), a hazardous solid waste with a high water and pollutant content, should be disposed of correctly. Hydrothermal liquefaction (HTL) shows tremendous potential to treat organic matter with substantial water content like SS. In this paper, we examined the impact of key factors on the characteristics and yield of bio-oil during HTL of SS. We clarified the impacts of each component on the yield through model compounds based on that and constructed a component additivity model for forecasting the bio-oil yield from biomass with complex component composition. In the reactions of the model compounds, cellulose showed synergistic interaction with protein and alkali lignin in the bio-oil yield but lipids showed antagonistic effects with protein and alkaline lignin. The co-HTL results of these binary mixtures improved our model and further clarified the reaction mechanism of HTL of SS.

4.
Sci Total Environ ; 866: 161354, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36603624

RESUMEN

Nitrogen (N) in sewage sludge (SS) should be reduced if it is to be used to produce clean solid fuels. However, the N transformation during hydrothermal carbonization (HTC) of SS is not yet fully understood. Since the composition of SS is complex, it is wise to study a model compound, which should have typical functional groups of organic components. Hence, in this study, six model components (protein, lipid, cellulose, hemicellulose, humic acid, and lignin) representing the main organic components in SS were mixed with SS and treated at 150-270 °C for 1 h. The influence of the organic component and reaction temperature on hydrochar yield, hydrochar characterization, and N distribution in the products was investigated. Except for proteins and lipids, all the other components were found to contribute to the N content and aromatization of the hydrochar. Humus shows the best comprehensive performance in terms of both reducing the N content and increasing the aromaticity. The strongest effects of hemicellulose and cellulose on N retention in hydrochar are found to occur at 210 °C and 240 °C, respectively. The N retention caused by lignin is correlated with the Mannich reaction at 240 °C, while humus significantly promotes N transformation at 240 °C. For carbohydrates, lignin, and humus, the temperatures required for increasing the N content and aromaticity maintain a high degree of consistency. Although protein pulls down the energy recovery (ER) and yield of the hydrochar, observations indicate that it favors the carbonization process. This finding can be used for estimating the N content and quality of hydrochar and provides references for future research targeting the upgrading of hydrochar.

5.
Sci Total Environ ; 804: 150094, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34508936

RESUMEN

Sewage sludge (SS) and polyvinyl chloride (PVC) are typical solid wastes. Their co-hydrothermal carbonization behavior was investigated in this study. The low-nitrogen solid fuel (0.94 wt%) with high heating value (9.84 MJ·Kg-1) was prepared through parameter optimization at 240 °C for 1.5 h under water loading amount of 0.84 g·cm-3. In an acidic environment, the stubborn protein in SS could be converted into free amino acids, which were generated by the decomposition of PVC under hydrothermal conditions. The stubborn N could be translated into easy-to-remove N, such as nitrile-N and inorganic N, and the dehydration reaction was evidently promoted. The acidic environment at high temperatures caused the dissolution of ash in SS and improved the combustion performance of hydrochar. FT-IR results showed that, with increased PVC loading proportion, -C=N- was converted into -C=O-. Co-hydrothermal carbonization could effectively improve the combustion performance of hydrochar. The addition of PVC could lead to the generation of increased volatile matter, fixed carbon, and unsaturated CC, and the combustion temperature range shifted to a high range. However, the generation of graphite-like carbon was caused by further increasing the PVC loading proportion, which hindered the improvement of its combustion performance. In the parameter optimization study, the increased water loading amount (from 0.54 g·cm-3 to 0.84 g·cm-3) had the most evident effect on the N content in the hydrochar (from 1.50 wt% to 0.94 wt%), which promoted the denitrification efficiency (from 60.11% to 75.00%) and the conversion of -C=N- components, and prevented further polymerization of solid products.


Asunto(s)
Nitrógeno , Aguas del Alcantarillado , Carbono , Cloruro de Polivinilo , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
6.
Bioresour Technol ; 299: 122582, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31877480

RESUMEN

Direct hydrogenolysis of Kraft lignin was catalyzed over a series of supported Ni or Re catalysts in ethanol solvent. The best results showed that the oil yield of 96.70 wt% was obtained with less char formation at 330 °C for 3 h over 5Ni-5Re/Nb2O5 catalyst. Product analysis demonstrated that the monomer yield of 35.41 wt% was given under mild condition, and low-molecular-weight aromatic alcohols were the main component in the liquid products. Ethanol was found to be more effective in H2 production and facilitated the transformation of phenolic monomers to aromatic chemicals. The results confirmed that the optimal 5Ni-5Re/Nb2O5 catalyst had superior oxophilicity and appropriate acid sites, which improved the ability to directly remove the methoxyl and hydroxyl groups of lignin-derived phenolic compounds without aromatic ring hydrogenation. In addition, the temperature, time and solvent effects on the lignin depolymerization were also investigated.


Asunto(s)
Lignina , Renio , Catálisis , Níquel , Niobio , Óxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA