Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1372088, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486868

RESUMEN

Introduction: Musculoskeletal multibody models of the spine can be used to investigate the biomechanical behaviour of the spine. In this context, a correct characterisation of the passive mechanical properties of the intervertebral joint is crucial. The intervertebral joint stiffness, in particular, is typically derived from the literature, and the differences between individuals and spine levels are often disregarded. Methods: This study tested if an optimisation method of personalising the intervertebral joint stiffnesses was able to capture expected stiffness variation between specimens and between spine levels and if the variation between spine levels could be accurately captured using a generic scaling ratio. Multibody models of six T12 to sacrum spine specimens were created from computed tomography data. For each specimen, two models were created: one with uniform stiffnesses across spine levels, and one accounting for level dependency. Three loading conditions were simulated. The initial stiffness values were optimised to minimize the kinematic error. Results: There was a range of optimised stiffnesses across the specimens and the models with level dependent stiffnesses were less accurate than the models without. Using an optimised stiffness substantially reduced prediction errors. Discussion: The optimisation captured the expected variation between specimens, and the prediction errors demonstrated the importance of accounting for level dependency. The inaccuracy of the predicted kinematics for the level-dependent models indicated that a generic scaling ratio is not a suitable method to account for the level dependency. The variation in the optimised stiffnesses for the different loading conditions indicates personalised stiffnesses should also be considered load-specific.

2.
Int J Numer Method Biomed Eng ; 37(10): e3503, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34114367

RESUMEN

Scoliosis is a deformity of the spine that in severe cases requires surgical treatment. There is still disagreement among clinicians as to what the aim of such treatment is as well as the optimal surgical technique. Numerical models can aid clinical decision-making by estimating the outcome of a given surgical intervention. This paper provided some background information on the modelling of the healthy spine and a review of the literature on scoliotic spine models, their validation, and their application. An overview of the methods and techniques used to construct scoliotic finite element and multibody models was given as well as the boundary conditions used in the simulations. The current limitations of the models were discussed as well as how such limitations are addressed in non-scoliotic spine models. Finally, future directions for the numerical modelling of scoliosis were addressed.


Asunto(s)
Escoliosis , Columna Vertebral , Humanos , Columna Vertebral/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA