Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Front Genet ; 15: 1353289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38456017

RESUMEN

The suboptimal productivity of maize systems in sub-Saharan Africa (SSA) is a pressing issue, with far-reaching implications for food security, nutrition, and livelihood sustainability within the affected smallholder farming communities. Dissecting the genetic basis of grain protein, starch and oil content can increase our understanding of the governing genetic systems, improve the efficacy of future breeding schemes and optimize the end-use quality of tropical maize. Here, four bi-parental maize populations were evaluated in field trials in Kenya and genotyped with mid-density single nucleotide polymorphism (SNP) markers. Genotypic (G), environmental (E) and G×E variations were found to be significant for all grain quality traits. Broad sense heritabilities exhibited substantial variation (0.18-0.68). Linkage mapping identified multiple quantitative trait loci (QTLs) for the studied grain quality traits: 13, 7, 33, 8 and 2 QTLs for oil content, protein content, starch content, grain texture and kernel weight, respectively. The co-localization of QTLs identified in our research suggests the presence of shared genetic factors or pleiotropic effects, implying that specific genomic regions influence the expression of multiple grain quality traits simultaneously. Genomic prediction accuracies were moderate to high for the studied traits. Our findings highlight the polygenic nature of grain quality traits and demonstrate the potential of genomic selection to enhance genetic gains in maize breeding. Furthermore, the identified genomic regions and single nucleotide polymorphism markers can serve as the groundwork for investigating candidate genes that regulate grain quality traits in tropical maize. This, in turn, can facilitate the implementation of marker-assisted selection (MAS) in breeding programs focused on improving grain nutrient levels.

2.
Front Genet ; 14: 1282673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028598

RESUMEN

Among the diseases threatening maize production in Africa are gray leaf spot (GLS) caused by Cercospora zeina and northern corn leaf blight (NCLB) caused by Exserohilum turcicum. The two pathogens, which have high genetic diversity, reduce the photosynthesizing ability of susceptible genotypes and, hence, reduce the grain yield. To identify population-based quantitative trait loci (QTLs) for GLS and NCLB resistance, a biparental population of 230 lines derived from the tropical maize parents CML511 and CML546 and an association mapping panel of 239 tropical and sub-tropical inbred lines were phenotyped across multi-environments in western Kenya. Based on 1,264 high-quality polymorphic single-nucleotide polymorphisms (SNPs) in the biparental population, we identified 10 and 18 QTLs, which explained 64.2% and 64.9% of the total phenotypic variance for GLS and NCLB resistance, respectively. A major QTL for GLS, qGLS1_186 accounted for 15.2% of the phenotypic variance, while qNCLB3_50 explained the most phenotypic variance at 8.8% for NCLB resistance. Association mapping with 230,743 markers revealed 11 and 16 SNPs significantly associated with GLS and NCLB resistance, respectively. Several of the SNPs detected in the association panel were co-localized with QTLs identified in the biparental population, suggesting some consistent genomic regions across genetic backgrounds. These would be more relevant to use in field breeding to improve resistance to both diseases. Genomic prediction models trained on the biparental population data yielded average prediction accuracies of 0.66-0.75 for the disease traits when validated in the same population. Applying these prediction models to the association panel produced accuracies of 0.49 and 0.75 for GLS and NCLB, respectively. This research conducted in maize fields relevant to farmers in western Kenya has combined linkage and association mapping to identify new QTLs and confirm previous QTLs for GLS and NCLB resistance. Overall, our findings imply that genetic gain can be improved in maize breeding for resistance to multiple diseases including GLS and NCLB by using genomic selection.

3.
Front Genet ; 14: 1266402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964777

RESUMEN

Low soil nitrogen levels, compounded by the high costs associated with nitrogen supplementation through fertilizers, significantly contribute to food insecurity, malnutrition, and rural poverty in maize-dependent smallholder communities of sub-Saharan Africa (SSA). The discovery of genomic regions associated with low nitrogen tolerance in maize can enhance selection efficiency and facilitate the development of improved varieties. To elucidate the genetic architecture of grain yield (GY) and its associated traits (anthesis-silking interval (ASI), anthesis date (AD), plant height (PH), ear position (EPO), and ear height (EH)) under different soil nitrogen regimes, four F3 maize populations were evaluated in Kenya and Zimbabwe. GY and all the traits evaluated showed significant genotypic variance and moderate heritability under both optimum and low nitrogen stress conditions. A total of 91 quantitative trait loci (QTL) related to GY (11) and other secondary traits (AD (26), PH (19), EH (24), EPO (7) and ASI (4)) were detected. Under low soil nitrogen conditions, PH and ASI had the highest number of QTLs. Furthermore, some common QTLs were identified between secondary traits under both nitrogen regimes. These QTLs are of significant value for further validation and possible rapid introgression into maize populations using marker-assisted selection. Identification of many QTL with minor effects indicates genomic selection (GS) is more appropriate for their improvement. Genomic prediction within each population revealed low to moderately high accuracy under optimum and low soil N stress management. However, the accuracies were higher for GY, PH and EH under optimum compared to low soil N stress. Our findings indicate that genetic gain can be improved in maize breeding for low N stress tolerance by using GS.

4.
Plants (Basel) ; 12(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375939

RESUMEN

Doubled haploid (DH) technology has become integral to maize breeding programs to expedite inbred line development and increase the efficiency of breeding operations. Unlike many other plant species that use in vitro methods, DH production in maize uses a relatively simple and efficient in vivo haploid induction method. However, it takes two complete crop cycles for DH line generation, one for haploid induction and the other one for chromosome doubling and seed production. Rescuing in vivo induced haploid embryos has the potential to reduce the time for DH line development and improve the efficiency of DH line production. However, the identification of a few haploid embryos (~10%) resulting from an induction cross from the rest of the diploid embryos is a challenge. In this study, we demonstrated that an anthocyanin marker, namely R1-nj, which is integrated into most haploid inducers, can aid in distinguishing haploid and diploid embryos. Further, we tested conditions that enhance R1-nj anthocyanin marker expression in embryos and found that light and sucrose enhance anthocyanin expression, while phosphorous deprivation in the media had no affect. Validating the use of the R1-nj marker for haploid and diploid embryo identification using a gold standard classification based on visual differences among haploids and diploids for characteristics such as seedling vigor, erectness of leaves, tassel fertility, etc., indicated that the R1-nj marker could lead to significantly high false positives, necessitating the use of additional markers for increased accuracy and reliability of haploid embryo identification.

5.
Genes (Basel) ; 14(4)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37107685

RESUMEN

While sparse testing methods have been proposed by researchers to improve the efficiency of genomic selection (GS) in breeding programs, there are several factors that can hinder this. In this research, we evaluated four methods (M1-M4) for sparse testing allocation of lines to environments under multi-environmental trails for genomic prediction of unobserved lines. The sparse testing methods described in this study are applied in a two-stage analysis to build the genomic training and testing sets in a strategy that allows each location or environment to evaluate only a subset of all genotypes rather than all of them. To ensure a valid implementation, the sparse testing methods presented here require BLUEs (or BLUPs) of the lines to be computed at the first stage using an appropriate experimental design and statistical analyses in each location (or environment). The evaluation of the four cultivar allocation methods to environments of the second stage was done with four data sets (two large and two small) under a multi-trait and uni-trait framework. We found that the multi-trait model produced better genomic prediction (GP) accuracy than the uni-trait model and that methods M3 and M4 were slightly better than methods M1 and M2 for the allocation of lines to environments. Some of the most important findings, however, were that even under a scenario where we used a training-testing relation of 15-85%, the prediction accuracy of the four methods barely decreased. This indicates that genomic sparse testing methods for data sets under these scenarios can save considerable operational and financial resources with only a small loss in precision, which can be shown in our cost-benefit analysis.


Asunto(s)
Modelos Genéticos , Fitomejoramiento , Fitomejoramiento/métodos , Genoma de Planta/genética , Fenotipo , Genómica , Productos Agrícolas/genética
6.
Front Plant Sci ; 14: 1147857, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844039
7.
Front Plant Sci ; 14: 1086757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743507

RESUMEN

Development and deployment of high-yielding maize varieties with native resistance to Fall armyworm (FAW), turcicum leaf blight (TLB), and gray leaf spot (GLS) infestation is critical for addressing the food insecurity in sub-Saharan Africa. The objectives of this study were to determine the inheritance of resistance for FAW, identity hybrids which in addition to FAW resistance, also show resistance to TLB and GLS, and investigate the usefulness of models based on general combining ability (GCA) and SNP markers in predicting the performance of new untested hybrids. Half-diallel mating scheme was used to generate 105 F1 hybrids from 15 parents and another 55 F1 hybrids from 11 parents. These were evaluated in two experiments, each with commercial checks in multiple locations under FAW artificial infestation and optimum management in Kenya. Under artificial FAW infestation, significant mean squares among hybrids and hybrids x environment were observed for most traits in both experiments, including at least one of the three assessments carried out for foliar damage caused by FAW. Interaction of GCA x environment and specific combining ability (SCA) x environment interactions were significant for all traits under FAW infestation and optimal conditions. Moderate to high heritability estimates were observed for GY under both management conditions. Correlation between GY and two of the three scorings (one and three weeks after infestation) for foliar damage caused by FAW were negative (-0.27 and -0.38) and significant. Positive and significant correlation (0.84) was observed between FAW-inflicted ear damage and the percentage of rotten ears. We identified many superior-performing hybrids compared to the best commercial checks for both GY and FAW resistance associated traits. Inbred lines CML312, CML567, CML488, DTPYC9-F46-1-2-1-2, CKDHL164288, CKDHL166062, and CLRCY039 had significant and positive GCA for GY (positive) and FAW resistance-associated traits (negative). CML567 was a parent in four of the top ten hybrids under optimum and FAW conditions. Both additive and non-additive gene action were important in the inheritance of FAW resistance. Both GCA and marker-based models showed high correlation with field performance, but marker-based models exhibited considerably higher correlation. The best performing hybrids identified in this study could be used as potential single cross testers in the development of three-way FAW resistance hybrids. Overall, our results provide insights that help breeders to design effective breeding strategies to develop FAW resistant hybrids that are high yielding under FAW and optimum conditions.

8.
Viruses ; 14(12)2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36560769

RESUMEN

Maize Lethal Necrosis (MLN) disease, caused by a synergistic co-infection of maize chlorotic mottle virus (MCMV) and any member of the Potyviridae family, was first reported in EasternAfrica (EA) a decade ago. It is one of the most devastating threats to maize production in these regions since it can lead up to 100% crop loss. Conventional counter-measures have yielded some success; however, they are becoming less effective in controlling MLN. In EA, the focus has been on the screening and identification of resistant germplasm, dissecting genetic and the molecular basis of the disease resistance, as well as employing modern breeding technologies to develop novel varieties with improved resistance. CIMMYT and scientists from NARS partner organizations have made tremendous progresses in the screening and identification of the MLN-resistant germplasm. Quantitative trait loci mapping and genome-wide association studies using diverse, yet large, populations and lines were conducted. These remarkable efforts have yielded notable outcomes, such as the successful identification of elite resistant donor lines KS23-5 and KS23-6 and their use in breeding, as well as the identification of multiple MLN-tolerance promising loci clustering on Chr 3 and Chr 6. Furthermore, with marker-assisted selection and genomic selection, the above-identified germplasms and loci have been incorporated into elite maize lines in a maize breeding program, thus generating novel varieties with improved MLN resistance levels. However, the underlying molecular mechanisms for MLN resistance require further elucidation. Due to third generation sequencing technologies as well functional genomics tools such as genome-editing and DH technology, it is expected that the breeding time for MLN resistance in farmer-preferred maize varieties in EA will be efficient and shortened.


Asunto(s)
Estudio de Asociación del Genoma Completo , Potyviridae , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Potyviridae/genética , Zea mays/genética , Fenotipo
9.
Plants (Basel) ; 11(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36432819

RESUMEN

CIMMYT maize lines (CMLs), which represent the tropical maize germplasm, are freely available worldwide. All currently released 615 CMLs and fourteen temperate maize inbred lines were genotyped with 180 kompetitive allele-specific PCR single nucleotide polymorphisms to develop a reference fingerprinting SNP dataset that can be used to perform quality control (QC) and genetic diversity analyses. The QC analysis identified 25 CMLs with purity, identity, or mislabeling issues. Further field observation, purification, and re-genotyping of these CMLs are required. The reference fingerprinting SNP dataset was developed for all of the currently released CMLs with 152 high-quality SNPs. The results of principal component analysis and average genetic distances between subgroups showed a clear genetic divergence between temperate and tropical maize, whereas the three tropical subgroups partially overlapped with one another. More than 99% of the pairs of CMLs had genetic distances greater than 0.30, showing their high genetic diversity, and most CMLs are distantly related. The heterotic patterns, estimated with the molecular markers, are consistent with those estimated using pedigree information in two major maize breeding programs at CIMMYT. These research findings are helpful for ensuring the regeneration and distribution of the true CMLs, via QC analysis, and for facilitating the effective utilization of the CMLs, globally.

10.
Theor Appl Genet ; 135(12): 4351-4370, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36131140

RESUMEN

KEY MESSAGE: Genome-wide association study (GWAS) demonstrated that multiple genomic regions influence grain quality traits under nitrogen-starved soils. Using genomic prediction, genetic gains can be improved through selection for grain quality traits. Soils in sub-Saharan Africa are nitrogen deficient due to low fertilizer use and inadequate soil fertility management practices. This has resulted in a significant yield gap for the major staple crop maize, which is undermining nutritional security and livelihood sustainability across the region. Dissecting the genetic basis of grain protein, starch and oil content under nitrogen-starved soils can increase our understanding of the governing genetic systems and improve the efficacy of future breeding schemes. An association mapping panel of 410 inbred lines and four bi-parental populations were evaluated in field trials in Kenya and South Africa under optimum and low nitrogen conditions and genotyped with 259,798 SNP markers. Genetic correlations demonstrated that these populations may be utilized to select higher performing lines under low nitrogen stress. Furthermore, genotypic, environmental and GxE variations in nitrogen-starved soils were found to be significant for oil content. Broad sense heritabilities ranged from moderate (0.18) to high (0.86). Under low nitrogen stress, GWAS identified 42 SNPs linked to grain quality traits. These significant SNPs were associated with 51 putative candidate genes. Linkage mapping identified multiple QTLs for the grain quality traits. Under low nitrogen conditions, average prediction accuracies across the studied genotypes were higher for oil content (0.78) and lower for grain yield (0.08). Our findings indicate that grain quality traits are polygenic and that using genomic selection in maize breeding can improve genetic gain. Furthermore, the identified genomic regions and SNP markers can be utilized for selection to improve maize grain quality traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Zea mays/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Fenotipo , Grano Comestible/genética , Polimorfismo de Nucleótido Simple
11.
Theor Appl Genet ; 135(11): 3897-3916, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35320376

RESUMEN

KEY MESSAGE: Sustainable control of fall armyworm (FAW) requires implementation of effective integrated pest management (IPM) strategies, with host plant resistance as a key component. Significant opportunities exist for developing and deploying elite maize cultivars with native genetic resistance and/or transgenic resistance for FAW control in both Africa and Asia. The fall armyworm [Spodoptera frugiperda (J.E. Smith); FAW] has emerged as a serious pest since 2016 in Africa, and since 2018 in Asia, affecting the food security and livelihoods of millions of smallholder farmers, especially those growing maize. Sustainable control of FAW requires implementation of integrated pest management strategies, in which host plant resistance is one of the key components. Significant strides have been made in breeding elite maize lines and hybrids with native genetic resistance to FAW in Africa, based on the strong foundation of insect-resistant tropical germplasm developed at the International Maize and Wheat Improvement Center, Mexico. These efforts are further intensified to develop and deploy elite maize cultivars with native FAW tolerance/resistance and farmer-preferred traits suitable for diverse agro-ecologies in Africa and Asia. Independently, genetically modified Bt maize with resistance to FAW is already commercialized in South Africa, and in a few countries in Asia (Philippines and Vietnam), while efforts are being made to commercialize Bt maize events in additional countries in both Africa and Asia. In countries where Bt maize is commercialized, it is important to implement a robust insect resistance management strategy. Combinations of native genetic resistance and Bt maize also need to be explored as a path to more effective and sustainable host plant resistance options. We also highlight the critical gaps and priorities for host plant resistance research and development in maize, particularly in the context of sustainable FAW management in Africa and Asia.


Asunto(s)
Defensa de la Planta contra la Herbivoria , Zea mays , Zea mays/genética , Asia , Sudáfrica , México
12.
Genes (Basel) ; 13(2)2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35205295

RESUMEN

The recent invasion, rapid spread, and widescale destruction of the maize crop by the fall armyworm (FAW; Spodoptera frugiperda (J.E. Smith)) is likely to worsen the food insecurity situation in Africa. In the present study, a set of 424 maize lines were screened for their responses to FAW under artificial infestation to dissect the genetic basis of resistance. All lines were evaluated for two seasons under screen houses and genotyped with the DArTseq platform. Foliar damage was rated on a scale of 1 (highly resistant) to 9 (highly susceptible) and scored at 7, 14, and 21 days after artificial infestation. Analyses of variance revealed significant genotypic and genotype by environment interaction variances for all traits. Heritability estimates for leaf damage scores were moderately high and ranged from 0.38 to 0.58. Grain yield was negatively correlated with a high magnitude to foliar damage scores, ear rot, and ear damage traits. The genome-wide association study (GWAS) revealed 56 significant marker-trait associations and the predicted functions of the putative candidate genes varied from a defense response to several genes of unknown function. Overall, the study revealed that native genetic resistance to FAW is quantitative in nature and is controlled by many loci with minor effects.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Animales , Genómica , Hojas de la Planta , Spodoptera/genética , Zea mays/genética
13.
Genes (Basel) ; 13(2)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35205395

RESUMEN

Breeding maize lines with the improved level of desired agronomic traits under optimum and drought conditions as well as increased levels of resistance to several diseases such as maize lethal necrosis (MLN) is one of the most sustainable approaches for the sub-Saharan African region. In this study, 879 doubled haploid (DH) lines derived from 26 biparental populations were evaluated under artificial inoculation of MLN, as well as under well-watered (WW) and water-stressed (WS) conditions for grain yield and other agronomic traits. All DH lines were used for analyses of genotypic variability, association studies, and genomic predictions for the grain yield and other yield-related traits. Genome-wide association study (GWAS) using a mixed linear FarmCPU model identified SNPs associated with the studied traits i.e., about seven and eight SNPs for the grain yield; 16 and 12 for anthesis date; seven and eight for anthesis silking interval; 14 and 5 for both ear and plant height; and 15 and 5 for moisture under both WW and WS environments, respectively. Similarly, about 13 and 11 SNPs associated with gray leaf spot and turcicum leaf blight were identified. Eleven SNPs associated with senescence under WS management that had depicted drought-stress-tolerant QTLs were identified. Under MLN artificial inoculation, a total of 12 and 10 SNPs associated with MLN disease severity and AUDPC traits, respectively, were identified. Genomic prediction under WW, WS, and MLN disease artificial inoculation revealed moderate-to-high prediction accuracy. The findings of this study provide useful information on understanding the genetic basis for the MLN resistance, grain yield, and other agronomic traits under MLN artificial inoculation, WW, and WS conditions. Therefore, the obtained information can be used for further validation and developing functional molecular markers for marker-assisted selection and for implementing genomic prediction to develop superior elite lines.


Asunto(s)
Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Resistencia a la Enfermedad/genética , Grano Comestible/genética , Haploidia , Fenotipo , Fitomejoramiento , Zea mays/genética
14.
Front Genet ; 12: 767883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868253

RESUMEN

Maize lethal necrosis (MLN) is a viral disease with a devastating effect on maize production. Developing and deploying improved varieties with resistance to the disease is important to effectively control MLN; however, little is known about the causal genes and molecular mechanism(s) underlying MLN resistance. Screening thousands of maize inbred lines revealed KS23-5 and KS23-6 as two of the most promising donors of MLN resistance alleles. KS23-5 and KS23-6 lines were earlier developed at the University of Hawaii, United States, on the basis of a source population constituted using germplasm from Kasetsart University, Thailand. Both linkage mapping and association mapping approaches were used to discover and validate genomic regions associated with MLN resistance. Selective genotyping of resistant and susceptible individuals within large F2 populations coupled with genome-wide association study identified a major-effect QTL (qMLN06_157) on chromosome 6 for MLN disease severity score and area under the disease progress curve values in all three F2 populations involving one of the KS23 lines as a parent. The major-effect QTL (qMLN06_157) is recessively inherited and explained 55%-70% of the phenotypic variation with an approximately 6 Mb confidence interval. Linkage mapping in three F3 populations and three F2 populations involving KS23-5 or KS23-6 as one of the parents confirmed the presence of this major-effect QTL on chromosome 6, demonstrating the efficacy of the KS23 allele at qMLN06.157 in varying populations. This QTL could not be identified in population that was not derived using KS23 lines. Validation of this QTL in six F2 populations with 20 SNPs closely linked with qMLN06.157 was further confirmed its consistent expression across populations and its recessive nature of inheritance. On the basis of the consistent and effective resistance afforded by the KS23 allele at qMLN06.157, the QTL can be used in both marker-assisted forward breeding and marker-assisted backcrossing schemes to improve MLN resistance of breeding populations and key lines for eastern Africa.

15.
Heredity (Edinb) ; 127(5): 423-432, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34564692

RESUMEN

Genomic prediction models are often calibrated using multi-generation data. Over time, as data accumulates, training data sets become increasingly heterogeneous. Differences in allele frequency and linkage disequilibrium patterns between the training and prediction genotypes may limit prediction accuracy. This leads to the question of whether all available data or a subset of it should be used to calibrate genomic prediction models. Previous research on training set optimization has focused on identifying a subset of the available data that is optimal for a given prediction set. However, this approach does not contemplate the possibility that different training sets may be optimal for different prediction genotypes. To address this problem, we recently introduced a sparse selection index (SSI) that identifies an optimal training set for each individual in a prediction set. Using additive genomic relationships, the SSI can provide increased accuracy relative to genomic-BLUP (GBLUP). Non-parametric genomic models using Gaussian kernels (KBLUP) have, in some cases, yielded higher prediction accuracies than standard additive models. Therefore, here we studied whether combining SSIs and kernel methods could further improve prediction accuracy when training genomic models using multi-generation data. Using four years of doubled haploid maize data from the International Maize and Wheat Improvement Center (CIMMYT), we found that when predicting grain yield the KBLUP outperformed the GBLUP, and that using SSI with additive relationships (GSSI) lead to 5-17% increases in accuracy, relative to the GBLUP. However, differences in prediction accuracy between the KBLUP and the kernel-based SSI were smaller and not always significant.


Asunto(s)
Modelos Genéticos , Zea mays , Genoma , Genómica , Fenotipo , Polimorfismo de Nucleótido Simple , Zea mays/genética
16.
Front Plant Sci ; 12: 685488, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262585

RESUMEN

In maize, doubled haploid (DH) line production capacity of large-sized maize breeding programs often exceeds the capacity to phenotypically evaluate the complete set of testcross candidates in multi-location trials. The ability to partially select DH lines based on genotypic data while maintaining or improving genetic gains for key traits using phenotypic selection can result in significant resource savings. The present study aimed to evaluate genomic selection (GS) prediction scenarios for grain yield and agronomic traits of one of the tropical maize breeding pipelines of CIMMYT in eastern Africa, based on multi-year empirical data for designing a GS-based strategy at the early stages of the pipeline. We used field data from 3,068 tropical maize DH lines genotyped using rAmpSeq markers and evaluated as test crosses in well-watered (WW) and water-stress (WS) environments in Kenya from 2017 to 2019. Three prediction schemes were compared: (1) 1 year of performance data to predict a second year; (2) 2 years of pooled data to predict performance in the third year, and (3) using individual or pooled data plus converting a certain proportion of individuals from the testing set (TST) to the training set (TRN) to predict the next year's data. Employing five-fold cross-validation, the mean prediction accuracies for grain yield (GY) varied from 0.19 to 0.29 under WW and 0.22 to 0.31 under WS, when the 1-year datasets were used training set to predict a second year's data as a testing set. The mean prediction accuracies increased to 0.32 under WW and 0.31 under WS when the 2-year datasets were used as a training set to predict the third-year data set. In a forward prediction scenario, good predictive abilities (0.53 to 0.71) were found when the training set consisted of the previous year's breeding data and converting 30% of the next year's data from the testing set to the training set. The prediction accuracy for anthesis date and plant height across WW and WS environments obtained using 1-year data and integrating 10, 30, 50, 70, and 90% of the TST set to TRN set was much higher than those trained in individual years. We demonstrate that by increasing the TRN set to include genotypic and phenotypic data from the previous year and combining only 10-30% of the lines from the year of testing, the predicting accuracy can be increased, which in turn could be used to replace the first stage of field-based screening partially, thus saving significant costs associated with the testcross formation and multi-location testcross evaluation.

17.
Front Plant Sci ; 12: 658978, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239521

RESUMEN

To enable a scalable sparse testing genomic selection (GS) strategy at preliminary yield trials in the CIMMYT maize breeding program, optimal approaches to incorporate genotype by environment interaction (GEI) in genomic prediction models are explored. Two cross-validation schemes were evaluated: CV1, predicting the genetic merit of new bi-parental populations that have been evaluated in some environments and not others, and CV2, predicting the genetic merit of half of a bi-parental population that has been phenotyped in some environments and not others using the coefficient of determination (CDmean) to determine optimized subsets of a full-sib family to be evaluated in each environment. We report similar prediction accuracies in CV1 and CV2, however, CV2 has an intuitive appeal in that all bi-parental populations have representation across environments, allowing efficient use of information across environments. It is also ideal for building robust historical data because all individuals of a full-sib family have phenotypic data, albeit in different environments. Results show that grouping of environments according to similar growing/management conditions improved prediction accuracy and reduced computational requirements, providing a scalable, parsimonious approach to multi-environmental trials and GS in early testing stages. We further demonstrate that complementing the full-sib calibration set with optimized historical data results in improved prediction accuracy for the cross-validation schemes.

18.
Front Plant Sci ; 12: 649308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040620

RESUMEN

Maize lethal necrosis (MLN), resulting from co-infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) can cause up to 100% yield losses in maize in Africa under serious disease conditions. Maize improvement through conventional backcross (BC) takes many generations but can significantly be shortened when molecular tools are utilized in the breeding process. We used a donor parent (KS23-6) to transfer quantitative trait loci (QTL) for resistance to MLN into nine adapted but MLN susceptible lines. Nurseries were established in Kiboko, Kenya during 2015-2017 seasons and BC3F2 progeny were developed using marker assisted backcrossing (MABC) approach. Six single nucleotide polymorphism (SNP) markers linked to QTL for resistance to MLN were used to genotype 2,400 BC3F2 lines using Kompetitive Allele Specific PCR (KASP) platform. We detected that two of the six QTL had major effects for resistance to MLN under artificial inoculation field conditions in 56 candidate BC3F2 lines. To confirm whether these two QTL are reproducible under different field conditions, the 56 BC3F2 lines including their parents were evaluated in replicated trials for two seasons under artificial MLN inoculations in Naivasha, Kenya in 2018. Strong association of genotype with phenotype was detected. Consequently, 19 superior BC3F2 lines with favorable alleles and showing improved levels of resistance to MLN under artificial field inoculation were identified. These elite lines represent superior genetic resources for improvement of maize hybrids for resistance to MLN. However, 20 BC3F2 lines were fixed for both KASP markers but were susceptible to MLN under field conditions, which could suggest weak linkage between the KASP markers and target genes. The validated two major QTL can be utilized to speed up the breeding process but additional loci need to be identified between the KASP markers and the resistance genes to strengthen the linkage.

19.
Theor Appl Genet ; 134(6): 1729-1752, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33594449

RESUMEN

KEY MESSAGE: Intensive public sector breeding efforts and public-private partnerships have led to the increase in genetic gains, and deployment of elite climate-resilient maize cultivars for the stress-prone environments in the tropics. Maize (Zea mays L.) plays a critical role in ensuring food and nutritional security, and livelihoods of millions of resource-constrained smallholders. However, maize yields in the tropical rainfed environments are now increasingly vulnerable to various climate-induced stresses, especially drought, heat, waterlogging, salinity, cold, diseases, and insect pests, which often come in combinations to severely impact maize crops. The International Maize and Wheat Improvement Center (CIMMYT), in partnership with several public and private sector institutions, has been intensively engaged over the last four decades in breeding elite tropical maize germplasm with tolerance to key abiotic and biotic stresses, using an extensive managed stress screening network and on-farm testing system. This has led to the successful development and deployment of an array of elite stress-tolerant maize cultivars across sub-Saharan Africa, Asia, and Latin America. Further increasing genetic gains in the tropical maize breeding programs demands judicious integration of doubled haploidy, high-throughput and precise phenotyping, genomics-assisted breeding, breeding data management, and more effective decision support tools. Multi-institutional efforts, especially public-private alliances, are key to ensure that the improved maize varieties effectively reach the climate-vulnerable farming communities in the tropics, including accelerated replacement of old/obsolete varieties.


Asunto(s)
Cambio Climático , Fitomejoramiento , Zea mays/genética , Frío , Productos Agrícolas/genética , Resistencia a la Enfermedad , Sequías , Inundaciones , Haploidia , Calor , Fenotipo , Estrés Fisiológico , Clima Tropical
20.
Theor Appl Genet ; 134(3): 941-958, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33388884

RESUMEN

KEY MESSAGE: Genome-wide association revealed that resistance to Striga hermonthica is influenced by multiple genomic regions with moderate effects. It is possible to increase genetic gains from selection for Striga resistance using genomic prediction. Striga hermonthica (Del.) Benth., commonly known as the purple witchweed or giant witchweed, is a serious problem for maize-dependent smallholder farmers in sub-Saharan Africa. Breeding for Striga resistance in maize is complicated due to limited genetic variation, complexity of resistance and challenges with phenotyping. This study was conducted to (i) evaluate a set of diverse tropical maize lines for their responses to Striga under artificial infestation in three environments in Kenya; (ii) detect quantitative trait loci associated with Striga resistance through genome-wide association study (GWAS); and (iii) evaluate the effectiveness of genomic prediction (GP) of Striga-related traits. An association mapping panel of 380 inbred lines was evaluated in three environments under artificial Striga infestation in replicated trials and genotyped with 278,810 single-nucleotide polymorphism (SNP) markers. Genotypic and genotype x environment variations were significant for measured traits associated with Striga resistance. Heritability estimates were moderate (0.42) to high (0.92) for measured traits. GWAS revealed 57 SNPs significantly associated with Striga resistance indicator traits and grain yield (GY) under artificial Striga infestation with low to moderate effect. A set of 32 candidate genes physically near the significant SNPs with roles in plant defense against biotic stresses were identified. GP with different cross-validations revealed that prediction of performance of lines in new environments is better than prediction of performance of new lines for all traits. Predictions across environments revealed high accuracy for all the traits, while inclusion of GWAS-detected SNPs led to slight increase in the accuracy. The item-based collaborative filtering approach that incorporates related traits evaluated in different environments to predict GY and Striga-related traits outperformed GP for Striga resistance indicator traits. The results demonstrated the polygenic nature of resistance to S. hermonthica, and that implementation of GP in Striga resistance breeding could potentially aid in increasing genetic gain for this important trait.


Asunto(s)
Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Malezas/fisiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Striga/fisiología , Zea mays/genética , Alelos , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Ligamiento Genético , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/parasitología , Zea mays/inmunología , Zea mays/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA