Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 13(1): 15505, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726386

RESUMEN

An opportunistic human pathogenic bacterium, Chromobacterium violaceum resists the potency of most antibiotics by exploiting the quorum sensing system within their community to control virulence factor expression. Therefore, blocking the quorum sensing mechanism could help to treat several infectious caused by this organism. The quorum sensing receptor (CviR) of C. violaceum was used as a model target in the current investigation to identify potentially novel quorum sensing inhibitors from Cladosporium spp. through in silico computational approaches. The molecular docking results confirmed the anti-quorum sensing potential of bioactive compounds from Cladosporium spp. through binding to CviR with varying docking scores between - 5.2 and - 9.5 kcal/mol. Relative to the positive control [Azithromycin (- 7.4 kcal/mol)], the top six metabolites of Cladosporium spp. had higher docking scores and were generally greater than - 8.5 kcal/mol. The thermodynamic stability and binding affinity refinement of top-ranked CviR inhibitors were further studied through a 160 ns molecular dynamic (MD) simulation. The Post-MD simulation analysis confirmed the top-ranked compounds' affinity, stability, and biomolecular interactions with CviR at 50 ns, 100 ns, and 160 ns with Coniochaetone K of the Cladosporium spp. having the highest binding free energy (- 30.87 kcal/mol) and best interactions (two consistent hydrogen bond contact) following the 160 ns simulation. The predicted pharmacokinetics properties of top selected compounds point to their drug likeliness, potentiating their chance as a possible drug candidate. Overall, the top-ranked compounds from Cladosporium spp., especially Coniochaetone K, could be identified as potential C. violaceum CviR inhibitors. The development of these compounds as broad-spectrum antibacterial medicines is thus possible in the future following the completion of further preclinical and clinical research.


Asunto(s)
Cladosporium , Percepción de Quorum , Humanos , Simulación del Acoplamiento Molecular , Antibacterianos , Simulación de Dinámica Molecular
2.
Environ Sci Pollut Res Int ; 30(19): 56731-56742, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36929264

RESUMEN

During the present century, plant-based zinc oxide nanoparticles (ZnO-NPs) are exploited extensively for their vast biological properties due to their unique characteristic features and eco-friendly nature. Diabetes is one of the fast-growing human diseases/abnormalities worldwide, and the need for new/ novel antiglycation products is the need of the hour. The study deals with the phyto-fabrication of ZnO-NPs from Boerhaavia erecta, a medicinally important plant, and to evaluate their antioxidant and antiglycation ability in vitro. UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to characterize the phyto-fabricated ZnO-NPs. The characterization of nanoparticles revealed that the particles showed an absorption peak at 362 nm and band gap energy of 3.2 eV, approximately 20.55 nm in size, with a ZnO elemental purity of 96.61%. The synthesized particles were found agglomerated when observed under SEM, and the FT-IR studies proved that the phyto-constituents of the extract involved during the different stages (reduction, capping, and stabilization) of nanoparticles synthesis. The antioxidant and metal chelating activities confirmed that ZnO-NPs could inhibit the free radicals generated, which was dose-dependent with an IC50 value between 1.81 and 1.94 mg mL-1, respectively. In addition, the phyto-fabricated nanoparticles blocked the formation of advanced glycation end products (AGEs) as noticed through inhibition of Amadori products, trapping of reactive dicarbonyl intermediate and breaking the cross-link of glycated protein. It was also noted that the phyto-fabricated ZnO-NPs significantly prevented the damage of red blood corpuscles (RBCs) induced by MGO. The present study's findings will provide an experimental basis for exploring ZnO-NPs in diabetes-related complications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Humanos , Óxido de Zinc/química , Antibacterianos/química , Antioxidantes/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Difracción de Rayos X , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nanopartículas del Metal/química
4.
Molecules ; 28(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36838574

RESUMEN

In the present study, the binding affinity of 52 bioactive secondary metabolites from Wedelia trilobata towards the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (PDB: 2W3L) structure was identified by using in silico molecular docking and molecular dynamics simulation. The molecular docking results demonstrated that the binding energies of docked compounds with Bcl-2 protein ranged from -5.3 kcal/mol to -10.1 kcal/mol. However, the lowest binding energy (-10.1 kcal/mol) was offered by Friedelin against Bcl-2 protein when compared to other metabolites and the standard drug Obatoclax (-8.4 kcal/mol). The molecular dynamics simulations revealed that the Friedelin-Bcl-2 protein complex was found to be stable throughout the simulation period of 100 ns. Overall, the predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of Friedelin are relatively better than Obatoclax, with the most noticeable differences in many parameters where Friedelin has no AMES toxicity, hepatotoxicity, and skin sensitization. The ADMET profiling of selected compounds supported their in silico drug-likeness properties. Based on the computational analyses, the present study concluded that Friedelin of W. trilobata was found to be the potential inhibitor of the Bcl-2 protein, which merits attention for further in vitro and in vivo studies before clinical trials.


Asunto(s)
Neoplasias , Fitoquímicos , Wedelia , Humanos , Proteínas Reguladoras de la Apoptosis , Supervivencia Celular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Wedelia/química , Fitoquímicos/farmacología
5.
Sci Rep ; 12(1): 22446, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575224

RESUMEN

Cladosporium spp. have been reported for their great diversity of secondary metabolites which represent as a prominent base material for verifying the biological activities. Several bioactive compounds which have antimicrobial, cytotoxic, quorum sensing inhibitory and phytotoxic activities have been isolated from Cladosporium species. Most of them are still needed to be explored for their anticancer properties. Therefore, the present study is focused on screening and identifying the bioactive compounds of Cladosporium spp. for their anticancer activity via the integrated approaches of Molecular Docking (MD), Molecular Dynamics Simulation (MDS) and Density Functional Theory (DFT) studies. A total of 123 bioactive compounds of Cladosporium spp. were explored for their binding affinity with the selected breast cancer drug target receptor such as estrogen receptor alpha (PDB:6CBZ). The Molecular Docking studies revealed that amongst the bioactive compounds screened, Altertoxin X and Cladosporol H showed a good binding affinity of - 10.5 kcal/mol and - 10.3 kcal/mol, respectively, with the estrogen receptor alpha when compared to the reference compound (17[Formula: see text]-Estradiol: - 10.2 kcal/mol). The MDS study indicated the stable binding patterns and conformation of the estrogen receptor alpha-Altertoxin X complex in a stimulating environment. In addition, in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) study suggested that Altertoxin X has a good oral bioavailability with a high LD[Formula: see text] value of 2.375 mol/kg and did not cause any hepatotoxicity and skin sensitization. In summary, the integrated approaches revealed that Altertoxin X possesses a promising anticancer activity and could serve as a new therapeutic drug for breast cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias , Simulación del Acoplamiento Molecular , Cladosporium , Receptor alfa de Estrógeno , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Antineoplásicos/química
6.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500380

RESUMEN

The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (Mpro) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication. A total of 16 anti-HIV compounds were found to have a binding affinity greater than -8.9 kcal/mol out of 150 compounds screened. Pseudohypericin had a high affinity with the energy of -10.2 kcal/mol, demonstrating amino acid residual interactions with LEU141, GLU166, ARG188, and GLN192, followed by Hypericin (-10.1 kcal/mol). Moreover, the ADME (Absorption, Distribution, Metabolism and Excretion) analysis of Pseudohypericin and Hypericin recorded a low bioavailability (BA) score of 0.17 and violated Lipinski's rule of drug-likeness. The docking and molecular simulations indicated that the quinone compound, Pseudohypericin, could be tested in vitro and in vivo as potent molecules against COVID-19 disease prior to clinical trials.This was also supported by the theoretical and computational studies conducted. The global and local descriptors, which are the underpinnings of Conceptual Density FunctionalTheory (CDFT) have beenpredicted through successful model chemistry, hoping that they could be of help in the comprehension of the chemical reactivity properties of the molecular systems considered in this study.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Proteasas 3C de Coronavirus , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología
7.
PLoS One ; 17(10): e0275432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36201520

RESUMEN

Breast cancer is the second most common malignancy in females worldwide and poses a great challenge that necessitates the identification of novel therapeutic agents from several sources. This research aimed to study the molecular docking and molecular dynamics simulations of four proteins (such as PDB: 6CBZ, 1FDW, 5GWK and 2WTT) with the selected phytochemicals from Withania somnifera to identify the potential inhibitors for breast cancer. The molecular docking result showed that among 44 compounds, two of them, Ashwagandhanolide and Withanolide sulfoxide have the potential to inhibit estrogen receptor alpha (ERα), 17-beta-hydroxysteroid -dehydrogenase type 1 (17ß-HSD1), topoisomerase II alpha (TOP2A) and p73 tetramerization domain that are expressed during breast cancer. The molecular dynamics (MD) simulations results suggested that Ashwagandhanolide remained inside the binding cavity of four targeted proteins and contributed favorably towards forming a stable protein-ligand complex throughout the simulation. Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties confirmed that Ashwagandhanolide is hydrophobic and has moderate intestinal permeability, good intestinal absorption, and poor skin permeability. The compound has a relatively low VDss value (-1.652) and can be transported across ABC transporter and good central nervous system (CNS) permeability but did not easily cross the blood-brain barrier (BBB). This compound does not possess any mutagenicity, hepatotoxicity and skin sensitization. Based on the results obtained, the present study highlights the anticancer potential of Ashwagandhanolide, a compound from W. somnifera. Furthermore, in vitro and in vivo studies are necessary to perform before clinical trials to prove the potentiality of Ashwagandhanolide.


Asunto(s)
Neoplasias , Withania , Witanólidos , Transportadoras de Casetes de Unión a ATP , ADN-Topoisomerasas de Tipo II , Sistemas de Liberación de Medicamentos , Ergosterol/análogos & derivados , Receptor alfa de Estrógeno , Hidroxiesteroides , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sulfóxidos , Withania/química , Witanólidos/farmacología
8.
Antioxidants (Basel) ; 11(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36139837

RESUMEN

Agriculture has a lot of responsibility as the rise in the world's population demands more food requirements. However, more than one type of biotic and abiotic stress continually impacts agricultural productivity. Drought stress is a major abiotic stress that significantly affects agricultural productivity every year as the plants undergo several morphological, biochemical, and physiological modifications, such as repressed root and shoot growth, reduced photosynthesis and transpiration rate, excessive production of reactive oxygen species (ROS), osmotic adjustments, and modified leaf senescence regulating and stress signaling pathways. Such modifications may permanently damage the plants; therefore, mitigation strategies must be developed. The use of drought resistant crop cultivars is more expensive and labor-intensive with few advantages. However, exploiting plant growth promoting rhizobacteria (PGPR) is a proven alternative with numerous direct and indirect advantages. The PGPR confers induced systemic tolerance (IST) mechanisms in plants in response to drought stress via multiple mechanisms, including the alteration of root architecture, maintenance of high relative water content, improvement of photosynthesis rate, production of phytohormones, exopolysaccharides, ACC deaminase, carotenoids and volatiles, induction of antioxidant defense system, and alteration in stress-responsive gene expression. The commercial application of PGPR as bioinoculants or biostimulants will remain contingent on more robust strain selection and performance under unfavorable environmental conditions. This review highlights the possible mechanisms of PGPR by activating the plant adaptive defense systems for enhancing drought tolerance and improving overall growth and yield.

9.
Curr Pharm Des ; 28(12): 969-980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35796443

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) has caused a global pandemic with a high mortality and morbidity rate worldwide. The COVID-19 vaccines that are currently in development or already approved are expected to provide at least some protection against the emerging variants of the virus, but the mutations may reduce the efficacy of the existing vaccines. Purified phytochemicals from medicinal plants provide a helpful framework for discovering new therapeutic leads as they have long been employed in traditional medicine to treat many disorders. OBJECTIVE: The objectives of the study are to exploit the anti-HIV bioactive compounds against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) through molecular docking studies and to evaluate the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of potential compounds. METHODS: Molecular docking was performed to study the interaction of ligands with the target sites of RdRp protein (PDB: 6M71) using AutoDock Vina. The ADMET properties of potential compounds were predicted using the pkCSM platform. RESULTS: A total of 151 phytochemicals derived from the medicinal plants with recognized antiviral activity and 18 anti-HIV drugs were virtually screened against COVID-19 viral RdRp to identify putative inhibitors that facilitate the development of potential anti-COVID-19 drug candidates. The computational studies identified 34 compounds and three drugs inhibiting viral RdRp with binding energies ranging from -10.2 to -8.5 kcal/mol. Among them, five compounds, namely Michellamine B, Quercetin 3-O-(2'',6''-digalloyl)-beta-Dgalactopyranoside, Corilagin, Hypericin, and 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose residues, bound efficiently with the binding site of RdRp. Besides, Lopinavir, Maraviroc, and Remdesivir drugs also inhibited SARS-CoV-2 polymerase. In addition, the ADMET properties of top potential compounds were also predicted in comparison to the drugs. CONCLUSION: The present study suggested that these potential drug candidates can be further subjected to in vitro and in vivo studies that may help develop effective anti-COVID-19 drugs.


Asunto(s)
Fármacos Anti-VIH , Tratamiento Farmacológico de COVID-19 , Vacunas contra la COVID-19 , Humanos , Simulación del Acoplamiento Molecular , ARN Viral , ARN Polimerasa Dependiente del ARN , SARS-CoV-2
10.
J Fungi (Basel) ; 7(4)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919629

RESUMEN

Rhizosphere-resident fungi that are helpful to plants are generally termed as 'plant growth promoting fungi' (PGPF). These fungi are one of the chief sources of the biotic inducers known to give their host plants numerous advantages, and they play a vital role in sustainable agriculture. Today's biggest challenge is to satisfy the rising demand for crop protection and crop yield without harming the natural ecosystem. Nowadays, PGPF has become an eco-friendly way to improve crop yield by enhancing seed germination, shoot and root growth, chlorophyll production, and fruit yield, etc., either directly or indirectly. The mode of action of these PGPF includes the solubilization and mineralization of the essential micro- and macronutrients needed by plants to regulate the balance for various plant processes. PGPF produce defense-related enzymes, defensive/volatile compounds, and phytohormones that control pathogenic microbes' growth, thereby assisting the plants in facing various biotic and abiotic stresses. Therefore, this review presents a holistic view of PGPF as efficient natural biofertilizers to improve crop plants' growth and resistance.

11.
Molecules ; 26(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567661

RESUMEN

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL-1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.


Asunto(s)
Ipomoea/metabolismo , Nanopartículas/química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Compuestos de Bifenilo/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/metabolismo , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/toxicidad , Tecnología Química Verde , Células HT29 , Humanos , Pruebas de Mutagenicidad , Cebollas/efectos de los fármacos , Cebollas/genética , Picratos/química , Óxido de Zinc/metabolismo , Óxido de Zinc/toxicidad
12.
Sci Rep ; 10(1): 20584, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239694

RESUMEN

Plants are endowed with a large pool of structurally diverse small molecules known as secondary metabolites. The present study aims to virtually screen these plant secondary metabolites (PSM) for their possible anti-SARS-CoV-2 properties targeting four proteins/ enzymes which govern viral pathogenesis. Results of molecular docking with 4,704 ligands against four target proteins, and data analysis revealed a unique pattern of structurally similar PSM interacting with the target proteins. Among the top-ranked PSM which recorded lower binding energy (BE), > 50% were triterpenoids which interacted strongly with viral spike protein-receptor binding domain, > 32% molecules which showed better interaction with the active site of human transmembrane serine protease were belongs to flavonoids and their glycosides, > 16% of flavonol glycosides and > 16% anthocyanidins recorded lower BE against active site of viral main protease and > 13% flavonol glycoside strongly interacted with active site of viral RNA-dependent RNA polymerase. The primary concern about these PSM is their bioavailability. However, several PSM recorded higher bioavailability score and found fulfilling most of the drug-likeness characters as per Lipinski's rule (Coagulin K, Kamalachalcone C, Ginkgetin, Isoginkgetin, 3,3'-Biplumbagin, Chrysophanein, Aromoline, etc.). Natural occurrence, bio-transformation, bioavailability of selected PSM and their interaction with the target site of selected proteins were discussed in detail. Present study provides a platform for researchers to explore the possible use of selected PSM to prevent/ cure the COVID-19 by subjecting them for thorough in vitro and in vivo evaluation for the capabilities to interfering with the process of viral host cell recognition, entry and replication.


Asunto(s)
Antivirales/química , COVID-19/virología , Simulación por Computador , Extractos Vegetales/química , Plantas/metabolismo , SARS-CoV-2/efectos de los fármacos , Metabolismo Secundario , Dominio Catalítico , Proteínas M de Coronavirus/química , Evaluación Preclínica de Medicamentos/métodos , Flavonoides/química , Humanos , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Plantas/química , Unión Proteica , ARN Polimerasa Dependiente del ARN/química , SARS-CoV-2/enzimología , Serina Endopeptidasas/química , Glicoproteína de la Espiga del Coronavirus/química
13.
Biomolecules ; 10(2)2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092985

RESUMEN

Cinnamomum verum plant extract mediated propellant chemistry route was used for the green synthesis of zinc oxide nanoparticles. Prepared samples were confirmed for their nano regime using advanced characterization techniques such as powder X-ray diffraction and microscopic techniques such as scanning electron microscopy and transmission electron microscopy. The energy band gap of the green synthesized zinc oxide (ZnO)-nanoparticles (NPs) were found between 3.25-3.28 eV. Fourier transmission infrared spectroscopy shows the presence of Zn-O bond within the wave number of 500 cm-1. SEM images show the specific agglomeration of particles which was also confirmed by TEM studies. The green synthesized ZnO-NPs inhibited the growth of Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 125 µg mL-1 and 62.5 µg mL-1, respectively. The results indicate the prepared ZnO-NPs can be used as a potential antimicrobial agent against harmful pathogens.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Cinnamomum zeylanicum/química , Nanopartículas/química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antibacterianos/síntesis química , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Tecnología Química Verde , Humanos , Nanopartículas/ultraestructura , Corteza de la Planta/química , Extractos Vegetales/química , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Óxido de Zinc/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA