Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 98(10): 1425, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30703987

RESUMEN

Potatoes are a major crop in the Columbia Basin of Oregon and Washington, representing an annual farm gate value of almost $750 million. Zebra chip disease (ZC), a new and economically important disease of potato, was first reported in Oregon and Washington in 2011 (1). The disease is caused by the bacterium 'Candidatus Liberibacter solanacearum' (Lso, also referred to as 'Ca. L. psyllaurous'), which is vectored by the potato psyllid (Bactericera cockerelli Sulc) (1,2). Identifying alternative hosts for Lso may facilitate management of ZC disease, which has increased potato production costs in the region. The perennial weed, bittersweet nightshade (Solanum dulcamara L.), is a year-round host of the potato psyllid (3) and is also a suspected host of Lso. However, little is known about the role of this weed in ZC epidemiology. Naturally occurring bittersweet nightshade plants (n = 21) were sampled at six different locations near Hermiston, Oregon, between May and October in 2012. These plants exhibited several symptoms associated with Lso, ranging from asymptomatic to slight purpling, chlorosis, or scorching of the foliage. However, S. dulcamara exhibits similar symptoms under a variety of environmental conditions (drought stress, etc.); therefore, it was difficult to identify potentially infected plants based solely on symptomology. Leaf and stem tissue (n = 21) was analyzed with high-fidelity PCR using species-specific primers for the 16S rDNA gene, CLipoF, and OI2c (2,4). Approximately 27.3% of the plants tested positive for Lso using these primers, including plants from the following locations on 16 April, 16 May, and 24 May, respectively: Hat Rock, OR (45°55.033' N, 119°10.495' W), Irrigon, OR (45°54.560' N, 119°24.857' W), and Stanfield, OR (45°46.971' N, 119°13.203' W). Three plants were selected for further PCR analysis with primers for the outer membrane protein gene, 1482f and 2086r (1). Amplicons obtained with both sets of PCR primers were directly sequenced. A BLAST analysis showed that the 16S rDNA gene sequence (993 to 1,000 bp) shared 99 to 100% identity with several Lso accessions, including JN848751.1 (from Washington) and JN848753.1 (from Oregon). Likewise, the outer membrane protein gene sequence (600 to 601 bp) shared 99 to 100% identity with 'Ca. L. solanacearum' accession KC768330.1 (from Honduras). All six sequences were deposited in GenBank (Accession Nos. KJ854199 to KJ854204). According to these findings, bittersweet nightshade may be an important annual source of Lso in the region, particularly since it serves as a host for the potato psyllid. Potato psyllids were also detected at two of the locations with infected S. dulcamara: Irrigon, OR, and Stanfield, OR. A subsample of the psyllids collected in 2012 were analyzed with PCR and Lso was detected in a sample from Stanfield, OR (5). Identifying perennial hosts of Lso promotes a better understanding of both ZC disease epidemiology and management. To our knowledge, this is the first report of Lso causing natural infections in S. dulcamara in the United States. References: (1) J. M. Crosslin et al. Plant Dis. 96:452, 2012. (2) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (3) A. F. Murphy et al. Am. J. Pot. Res. 90:294, 2013. (4) G. A. Secor et al. Plant Dis. 93:574, 2009. (5) K. D. Swisher et al. Am. J. Pot. Res. 90:570, 2013.

2.
FEBS Lett ; 505(3): 405-8, 2001 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-11576537

RESUMEN

The activation pathway of the chloroplastic NADP-dependent malate dehydrogenase (MDH) by reduced thioredoxin has been examined using a method based on the mechanism of thiol/disulfide interchanges, i.e. the transient formation of a mixed disulfide between the target and the reductant. This disulfide can be stabilized when each of the partners is mutated in the less reactive cysteine of the disulfide/dithiol pair. As NADP-MDH has two regulatory disulfides per monomer, four different single cysteine mutants were examined, two for the C-terminal bridge and two for the N-terminal bridge. The results clearly show that the nucleophilic attack of thioredoxin on the C-terminal bridge proceeds through the formation of a disulfide with the most external Cys377. The results are less clear-cut for the N-terminal cysteines and suggest that the Cys24-Cys207 disulfide bridge previously proposed to be an intermediary step in MDH activation can form only when the C-terminal disulfide is reduced.


Asunto(s)
Malato Deshidrogenasa/metabolismo , Poaceae/enzimología , Tiorredoxinas/metabolismo , Sitios de Unión , Western Blotting , Disulfuros/metabolismo , Electroforesis en Gel de Poliacrilamida , Malato Deshidrogenasa/química , Malato Deshidrogenasa/genética , Malato-Deshidrogenasa (NADP+) , Mutagénesis
3.
Biochim Biophys Acta ; 1476(2): 311-23, 2000 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-10669795

RESUMEN

Thioredoxins are small proteins found in all living organisms. We have previously reported that Chlamydomonas reinhardtii thioredoxin h exhibited differences both in its absorption spectrum and its aggregation properties compared to thioredoxin m. In this paper, we demonstrate, by site-directed mutagenesis, that the particularity of the absorption spectrum is linked to the presence of an additional tryptophan residue in the h isoform. The pH and temperature dependence of the aggregation of both thioredoxins has been investigated. Our results indicate that the aggregation of TRX is highly dependent on pH and that the differences between the two TRX isoforms are linked to distinct pH dependencies. We have also analyzed the pH and temperature dependence of 12 distinct variants of TRX engineered by site-directed mutagenesis. The results obtained indicate that the differences in the hydrophobic core of the two TRX isoforms do not account for the differences of aggregation. On the other hand, we show the importance of His-109 as well as the second active site cysteine, Cys-39 in the aggregation mechanism.


Asunto(s)
Tiorredoxinas/química , Secuencia de Aminoácidos , Animales , Escherichia coli , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Conformación Proteica , Temperatura
4.
J Biol Chem ; 274(49): 34539-42, 1999 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-10574915

RESUMEN

The chloroplastic NADP-dependent malate dehydrogenase (NADP-MDH) catalyzing the reduction of oxaloacetate into L-malate is regulated by light. Its activation results from the thioredoxin-mediated reduction of two disulfides, located, respectively, in N- and C-terminal sequence extensions typical of all NADP-dependent light-regulated forms. Site-directed mutagenesis studies and the resolution of the three-dimensional structure of the oxidized (inactive) Sorghum vulgare enzyme showed that the C-terminal Cys(365)-Cys(377) disulfide constrains the C-terminal extension to fold into the active site where it acts as an internal inhibitor. In the present study, two-dimensional proton NMR spectra of an engineered NADP-MDH rendered monomeric by a 33-amino acid deletion at the N terminus (38 kDa) revealed that a 15-amino acid-long C-terminal peptide (Ala(375) to C-terminal Val(389)) acquired an increased mobility upon reduction, allowing its direct sequence-specific NMR assignment. The location of the flexible peptide in the sequence suggests that the first part of the C-terminal peptide is still folded near the core of the enzyme, so that cysteines 365 and 377 remain in proximity to allow for an efficient reoxidation/inactivation of the enzyme.


Asunto(s)
Cloroplastos/enzimología , Malato Deshidrogenasa/química , Malato Deshidrogenasa/metabolismo , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Activación Enzimática , Escherichia coli/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Malato-Deshidrogenasa (NADP+) , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
5.
FEBS Lett ; 444(2-3): 165-9, 1999 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-10050751

RESUMEN

The role of the internal Cys-207 of sorghum NADP-malate dehydrogenase (NADP-MDH) in the activation of the enzyme has been investigated through the examination of the ability of this residue to form mixed disulphides with thioredoxin mutated at either of its two active-site cysteines. The h-type Chlamydomonas thioredoxin was used, because it has no additional cysteines in the primary sequence besides the active-site cysteines. Both thioredoxin mutants proved equally efficient in forming mixed disulphides with an NADP-MDH devoid of its N-terminal bridge either by truncation, or by mutation of its N-terminal cysteines. They were poorly efficient with the more compact WT oxidised NADP-MDH. Upon mutation of Cys-207, no mixed disulphide could be formed, showing that this cysteine is the only one, among the four internal cysteines, which can form mixed disulphides with thioredoxin. These experiments confirm that the opening of the N-terminal disulphide loosens the interaction between subunits, making Cys-207, located at the dimer contact area, more accessible.


Asunto(s)
Disulfuros/metabolismo , Malato Deshidrogenasa/metabolismo , Hojas de la Planta/enzimología , Tiorredoxinas/metabolismo , Animales , Chlamydomonas/metabolismo , Cromatografía Líquida de Alta Presión , Cisteína/genética , Cisteína/metabolismo , Ácido Ditionitrobenzoico/metabolismo , Activación Enzimática , Cinética , Malato Deshidrogenasa/genética , Malato-Deshidrogenasa (NADP+) , Mutagénesis Sitio-Dirigida/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Tiorredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA