RESUMEN
BACKGROUND: Considering the analogies between the disruption in ecological systems and in individuals, the concept of integrative medicine is extended to the One Health concept and integrative medicine is introduced as an innovative model for guidance/correction in patients' therapy as well as in ecological realignment. SUMMARY: The specific elements of integrative medicine that can be applied to human health as well as to environmental health are described (e.g. self-regulation, salutogenic healing processes, transdisciplinary multimodal approaches, methodological pluralism). The need for sustainable use of limited resources in medicine and pharmacy is pointed out. As examples for urgent action, the need of taking into account the whole life cycle of pharmaceutical products as well as the impact of diet for human and planetary health are mentioned. KEY MESSAGE: Self-regulation plays a crucial role in human and environmental health; sustainable promotion of self-regulation enables people to become co-creators of their own health. Such a fundamental change requires transformation of one's inner relationship to nature and to oneself. The aim of the mini-review was to concretize individual fields of action and to investigate the question of whether the concepts of integrative medicine can be transferred from humans to the environment and thus to planetary health and whether this makes sense.
Asunto(s)
Medicina Integrativa , Salud Única , Humanos , Planeta Tierra , Salud Ambiental , Terapias ComplementariasRESUMEN
While the flowers of Matricaria recutita L., German chamomile, are widely used for medicinal and cosmetic purposes, little is known about its roots, which are used in complementary medicine for the preparation of aqueous fermented extracts for the treatment of cramps and anxiety. To broaden the understanding of the active principles involved, a model fermentation approach was developed and fermentates were compared to commercially manufactured tinctures. Coumarins and hydroxycinnamates were among the major secondary metabolites characterized using HPLC-MSn. After six months of fermentation and storage, low-molecular organic acids were detected by GC-MS. Fermentation contributed to the stabilization of antioxidant and radical scavenging activities, which were in a range of about 8-10â mg gallic acid equivalents/g dry weight and 20-24â mg trolox equivalents/g dry weight, determined by Folin-Ciocalteu and DPPH assays, respectively. In addition, antibacterial activities of the extracts against Gram-positive and -negative bacteria increased during the first week of fermentation. Fermentates were neither cytotoxic nor pro- or anti-inflammatory. Thus, fermentation of chamomile roots is a suitable method for the safe production of biofunctional aqueous chamomile root extracts that remain stable without the addition of synthetic preservatives.
Asunto(s)
Antioxidantes , Fermentación , Matricaria , Fitoquímicos , Extractos Vegetales , Raíces de Plantas , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Matricaria/química , Matricaria/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/metabolismo , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Agua/química , Animales , Picratos/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacosRESUMEN
Peyote (Lophophora williamsii) is a cactus that contains various biologically active alkaloids-such as pellotine, anhalonidine, hordenine and mescaline. Here, mescaline induces the psychoactive effects of peyote through the activation of the serotonin 5-HT2A receptor and the subsequent release of calcium (Ca2+) from the endoplasmic reticulum (ER). Moreover, an evaluation of the therapeutic benefits of mescaline is also currently the subject of research. It is important to consider that the outcome of taking a psychedelic drug strongly depends on the mindset of the recipient and the context (set and setting principle), including ceremonies and culture. This overview serves to summarise the current state of the knowledge of the metabolism, mechanism of action and clinical application studies of peyote and mescaline. Furthermore, the benefits of the potential of peyote and mescaline are presented in a new light, setting an example for combining a form of treatment embedded in nature and ritually enriched with our current highly innovative Western medicine.
Asunto(s)
Alcaloides , Antineoplásicos , Cactaceae , Alucinógenos , Mescalina/farmacología , Alucinógenos/farmacologíaRESUMEN
Dry eye disease (DED) is a common chronic ocular surface disease. Available therapies are effective but often associated with side effects. This study investigates the potential of a Malva sylvestris L. flower extract and two defined preparations, a mucilage and a polyphenol rich fraction, on cells that are essential for the DED pathology. Furthermore, single compounds were isolated and characterised out of the polyphenol fraction. The M. sylvestris extract and its two fractions reduced reactive oxygen species (ROS) in an ultraviolet-induced model and promoted wound healing capacity of HCE-T cells, but only the polyphenol fraction and the flower extract exhibited significant radical scavenging activity. The flower extract and the polyphenol fraction inhibited cytokine secretion (IL-6, TNF-α, IL-8) from HCE-T cells and THP-1 cells. In contrast, the mucilage fraction led to an increase in mediator secretion. The NF-κB activity and calcium influx in THP-1 and Jurkat cells, respectively was decreased by treatment with the flower extract and the polyphenol fraction, whereas the mucilage fraction had no influence on these parameters. Moreover, the flower extract and the mucilage fraction at low concentration could stimulate meibomian gland cells' lipid accumulation. The isolated single compounds showed no effect on analysed parameters, except a coumarin derivative and malvin which showed ROS inhibition effects.
Asunto(s)
Síndromes de Ojo Seco , Malva , Humanos , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/farmacología , Antiinflamatorios/farmacología , Cicatrización de Heridas , Polifenoles/farmacologíaRESUMEN
Viola tricolor is a medicinal plant with documented application as an anti-inflammatory herb. The standard of care for the treatment of inflammatory bowel disease is immunosuppressive therapeutics or biologics, which often have undesired effects. We explored V. tricolor herbal preparations that are rich in an emerging class of phytochemicals with drug-like properties, so-called cyclotides. As an alternative to existing inflammatory bowel disease medications, cyclotides have immunomodulatory properties, and their intrinsic stability allows for application in the gastrointestinal tract, for instance, via oral administration. We optimized the isolation procedure to improve the yield of cyclotides and compared the cellular effects of violet-derived organic solvent-extracts, aqueous preparations, and an isolated cyclotide from this plant on primary human T lymphocytes and macrophages, i.e., cells that are crucial for the initiation and progression of inflammatory bowel disease. The hot water herbal decoctions have a stronger immunosuppressive activity towards proliferation, interferon-γ, and interleukin-21 secretion of primary human T cells than a DCM/MeOH cyclotide-enriched extract, and the isolated cyclotide kalata S appears as one of the active components responsible for the observed effects. This effect was increased by a longer boiling duration. In contrast, the DCM/MeOH cyclotide-enriched extract was more effective in reducing the levels of cytokines interleukin-6, interleukin-12, interleukin-23, tumor necrosis factor-α, and Câ-âX-C motif chemokine ligand 10, secreted by human monocyte-derived macrophages. Defined cyclotide preparations of V. tricolor have promising pharmacological effects in modulating immune cell responses at the cytokine levels. This is important towards understanding the role of cyclotide-containing herbal drug preparations for future applications in immune disorders, such as inflammatory bowel disease.
Asunto(s)
Ciclotidas , Enfermedades Inflamatorias del Intestino , Plantas Medicinales , Viola , Humanos , Ciclotidas/química , Viola/química , Linfocitos T , Extractos Vegetales/farmacología , Extractos Vegetales/químicaRESUMEN
Nonpsychotic mental diseases (NMDs) affect approximately 15% of pregnant women in the US. Herbal preparations are perceived a safe alternative to placenta-crossing antidepressants or benzodiazepines in the treatment of nonpsychotic mental diseases. But are these drugs really safe for mother and foetus? This question is of great relevance to physicians and patients. Therefore, this study investigates the influence of St. John's wort, valerian, hops, lavender, and California poppy and their compounds hyperforin and hypericin, protopine, valerenic acid, and valtrate, as well as linalool, on immune modulating effects in vitro. For this purpose a variety of methods was applied to assess the effects on viability and function of human primary lymphocytes. Viability was assessed via spectrometric assessment, flow cytometric detection of cell death markers and comet assay for possible genotoxicity. Functional assessment was conducted via flow cytometric assessment of proliferation, cell cycle and immunophenotyping. For California poppy, lavender, hops, and the compounds protopine and linalool, and valerenic acid, no effect was found on the viability, proliferation, and function of primary human lymphocytes. However, St. John's wort and valerian inhibited the proliferation of primary human lymphocytes. Hyperforin, hypericin, and valtrate inhibited viability, induced apoptosis, and inhibited cell division. Calculated maximum concentration of compounds in the body fluid, as well as calculated concentrations based on pharmacokinetic data from the literature, were low and supported that the observed effects in vitro would probably have no relevance on patients. In-silico analyses comparing the structure of studied substances with the structure of relevant control substances and known immunosuppressants revealed structural similarities of hyperforin and valerenic acid to the glucocorticoids. Valtrate showed structural similarities to the T cells signaling modulating drugs.
Asunto(s)
Linfocitos , Trastornos Mentales , Extractos Vegetales , Femenino , Humanos , Embarazo , Extractos Vegetales/uso terapéutico , Fitoterapia , Trastornos Mentales/tratamiento farmacológico , Linfocitos/efectos de los fármacosRESUMEN
BACKGROUND: Viscum album L. (VA) preparations possess immunomodulatory properties and are used in complementary medicine to support cancer therapy. It is unclear if there is an impact of VA on the expression of immune checkpoint proteins on the surface of cancer cells. This study was designed to investigate the role of commercially available VA preparations on checkpoint programmed death ligand 1, 2 (PD-L1, PD-L2) and on major histocompatibility complex class I (MHC-I). METHODS: Four human cancer cell lines (prostate, colon, lung, and breast) were assayed for their PD-L1, PD-L2, and MHC-I level after stimulation with interferon-gamma (IFN-γ). The toxicity of mistletoe preparations for the cells was analysed. Afterwards, the effect of mistletoe preparations on the PD ligands and MHC-I was investigated. RESULTS: Surface protein analysis demonstrated that all tested tumour cell lines increased the PD-L1, PD-L2, and MHC-I-expression, but to different extents, after IFN-γ stimulation. Treatment with VA extracts did not influence the viability of the cells. The expression of PD ligands and MHC-I was not affected by incubation with the VA preparations. CONCLUSION: Our investigation concludes that VA treatment does not interfere with the expression of PD ligands or MHC-I among selected cancer cells.
Asunto(s)
Neoplasias de la Mama , Viscum album , Masculino , Humanos , Antígeno B7-H1 , Neoplasias de la Mama/tratamiento farmacológico , Interferón gamma , Próstata , Pulmón , ColonRESUMEN
Increased activation and proliferation of T lymphocytes plays an essential role in the development of chronic inflammation and autoimmune diseases. Currently used immunosuppressive drugs often do not provide long-lasting relief of symptoms and show a gradual loss of efficacy over time, and are accompanied by various side effects. Therefore, novel immunosuppressive lead substances are needed. For this purpose, an in-house library consisting of 600 extracts of plants from Panama was screened for inhibition of human T lymphocyte proliferation. As one of the hits, an ethyl acetate extract from the aerial parts of Hyptis brachiata (Lamiaceae) exhibited strong inhibitory effects. Subsequent investigation resulted in the isolation of seven aryltetralin lignans, five arylnaphthalene lignans, two flavonoids, three triterpenes, and cinnamyl cinnamate. Aryltetralin lignans inhibited T lymphocyte proliferation in a concentration-dependent manner without induction of apoptosis. No relevant inhibition was observed for the arylnaphthalene lignans, flavonoids, and triterpenes. Additional cell cycle arrest investigations revealed that isolated aryltetralin lignans potently inhibited cell division in G2/M phase similarly to podophyllotoxin. Multifluorescence panel analyses of the extract also showed weak suppressive effects on the production of IL-2 and TNF-α. Therefore, preparations made out of H. brachiata could be further explored as an interesting herbal alternative in the treatment of autoimmune diseases.
Asunto(s)
Hyptis , Lamiaceae , Lignanos , Humanos , Lignanos/farmacología , Podofilotoxina/farmacología , Proliferación CelularRESUMEN
Introduction: Classic psychedelics have been shown to exert therapeutic potential for the treatment of various psychiatric disorders, neuropsychiatric diseases, and neuronal damage. Besides their psychopharmacological activity, psychedelics have been reported to modulate immune functions. There has thus far been a sparse exploration of the direct immune-modulating effect of psychedelics on human immune cells in vitro. Since T cells are key mediators of several immune functions, inhibition of their function would increase the risk of infections. Methods: We investigated the effect of the classic psychedelics lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline on the proliferation and stimulated cytokine release of primary human T lymphocytes and on the stimulated NF-κB induction of monocytes. Results: We did not observe any relevant direct immune-modulatory effects of the tested classic psychedelics in either cell line. Discussion: We concluded that LSD, psilocin, DMT, or mescaline did not directly stimulate the proliferation or cytokine secretion of primary human T lymphocytes or stimulate NF-κB induction of monocytes. Our findings support the future safe use of classic psychedelics in assisted psychotherapy in patients with life-threatening diseases where immune suppression and diminished immune function would be detrimental.
RESUMEN
Essential oils (EOs) and their individual volatile organic constituents have been an inherent part of our civilization for thousands of years. They are widely used as fragrances in perfumes and cosmetics and contribute to a healthy diet, but also act as active ingredients of pharmaceutical products. Their antibacterial, antiviral, and anti-inflammatory properties have qualified EOs early on for both, the causal and symptomatic therapy of a number of diseases, but also for prevention. Obtained from natural, mostly plant materials, EOs constitute a typical example of a multicomponent mixture (more than one constituent substances, MOCS) with up to several hundreds of individual compounds, which in a sophisticated composition make up the property of a particular complete EO. The integrative use of EOs as MOCS will play a major role in human and veterinary medicine now and in the future and is already widely used in some cases, e.g., in aromatherapy for the treatment of psychosomatic complaints, for inhalation in the treatment of respiratory diseases, or topically administered to manage adverse skin diseases. The diversity of molecules with different functionalities exhibits a broad range of multiple physical and chemical properties, which are the base of their multi-target activity as opposed to single isolated compounds. Whether and how such a broad-spectrum effect is reflected in natural mixtures and which kind of pharmacological potential they provide will be considered in the context of ONE Health in more detail in this review.
RESUMEN
When confronted with non-psychotic mental disorders, pregnant women often refrain from using synthetic drugs and resort to herbal medicines such as St. John's wort, California poppy, valerian, lavender, and hops. Nevertheless, these herbal medicines have not yet been officially approved in pregnancy due to lack of safety data. Using a variety of in vitro methods (determination of cytotoxicity, apoptosis induction, genotoxicity, effects on metabolic properties, and inhibition/induction of differentiation) in a commonly used placental cell line (BeWo b30), we were previously able to show that extracts from these plants are likely to be safe at the usual clinical doses. In the present work, we wanted to extend our safety assessment of these herbal medicines by 1) looking for possible effects on gene expression and 2) using the same in vitro methods to characterize effects of selected phytochemicals that might conceivably lead to safety issues. Proteomics results were promising, as none of the five extracts significantly affected protein expression by up- or down-regulation. Protopine (contained in California poppy), valerenic acid (in valerian), and linalool (in lavender) were inconspicuous in all experiments and showed no adverse effects. Hyperforin and hypericin (two constituents of St. John's wort) and valtrate (typical for valerian) were the most obvious phytochemicals with respect to cytotoxic and apoptotic effects. A decrease in cell viability was evident with hypericin (≥1 µM) and valtrate (≥10 µM), whereas hyperforin (≥3 µM), hypericin (30 µM) and valtrate (≥10 µM) induced cell apoptosis. None of the tested phytochemicals resulted in genotoxic effects at concentrations of 0.1 and 1 µM and thus are not DNA damaging. No decrease in glucose consumption or lactate production was observed under the influence of the phytochemicals, except for valtrate (at all concentrations). No compound affected cell differentiation, except for hyperforin (≥1 µM), which had an inhibitory effect. This study suggests that extracts from St. John's wort, California poppy, valerian, lavender, and hops are likely to be safe during pregnancy. High plasma concentrations of some relevant compounds-hyperforin and hypericin from St. John's wort and valtrate from valerian-deserve special attention, however.
RESUMEN
Circular peptides are attractive lead compounds for drug development; this study investigates the immunomodulatory effects of defined root powder extracts and isolated peptides (called cyclotides) from Carapichea ipecacuanha (Brot.) L. Andersson ('ipecac'). Changes in the viability, proliferation and function of activated human primary T cells were analysed using flow cytometry-based assays. Three distinct peptide-enriched extracts of pulverised ipecac root material were prepared via C18 solid-phase extraction and analysed by reversed-phase HPLC and mass spectrometry. These extracts induced caspase 3/7 dependent apoptosis, thus leading to a suppressed proliferation of activated T cells and a reduction of the number of cells in the G2 phase. Furthermore, the stimulated T cells had a lower activation potential and a reduced degranulation capacity after treatment with ipecac extracts. Six different cyclotides were isolated from C. ipecacuanha and an T cell proliferation inhibiting effect was determined. Furthermore, the degranulation capacity of the T cells was diminished specifically by some cyclotides. In contrast to kalata B1 and its analog T20K, secretion of IL-2 and IFN- γ was not affected by any of the caripe cyclotides. The findings add to our increased understanding of the immunomodulating effects of cyclotides, and may provide a basis for the use of ipecac extracts for immunomodulation in conditions associated with an exessive immune responses.
Asunto(s)
Ciclotidas , Proliferación Celular , Ciclotidas/farmacología , Humanos , Ipeca/farmacología , Activación de Linfocitos , Linfocitos , Péptidos CíclicosRESUMEN
Modern phytotherapy is part of today's conventional evidence-based medicine and the use of phytopharmaceuticals in integrative oncology is becoming increasingly popular. Approximately 40% of users of such phytopharmaceuticals are tumour patients. The present review provides an overview of the most important plants and nature-based compounds used in integrative oncology and illustrates their pharmacological potential in preclinical and clinical settings. A selection of promising anti-tumour plants and ingredients was made on the basis of scientific evidence and therapeutic practical relevance and included Boswellia, gingko, ginseng, ginger, and curcumin. In addition to these nominees, there is a large number of other interesting plants and plant ingredients that can be considered for the treatment of cancer diseases or for the treatment of tumour or tumour therapy-associated symptoms. Side effects and interactions are included in the discussion. However, with the regular and intended use of phytopharmaceuticals, the occurrence of adverse side effects is rather rare. Overall, the use of defined phytopharmaceuticals is recommended in the context of a rational integrative oncology approach.
Asunto(s)
Oncología Integrativa , Neoplasias , Zingiber officinale , Ginkgo biloba , Humanos , Neoplasias/tratamiento farmacológico , FitoterapiaRESUMEN
BACKGROUND: Cannabis sativa L. extracts (CSE) are used for treating inflammatory conditions, but little is known about their immunomodulatory effects. We investigated a novel CSE with high (14%) CBD and low (0.2%) THC concentration in comparison with pure CBD on primary human lymphocytes. METHODS: Proliferation, cell cycle distribution, apoptosis/necrosis and viability were analysed with standard methods. Genotoxicity was evaluated with the comet-assay. The effect on T lymphocyte activation was evaluated via CD25/CD69 marker expression, degranulation assays and the production of cytokines. The influence on the transcription factors was analysed using Jurkat reporter cell lines. Specific CB2 receptor antagonist SR144528 and TRPV1 receptor antagonist A78416B were used to study the involvement of CB2 or TRPV1 receptors. RESULTS: CSE inhibited the proliferation of activated T lymphocytes in a dose-dependent manner without inducing apoptosis, necrosis, or affecting cell viability and DNA integrity. The inhibitory effect was mediated via the suppression of T lymphocytes activation, particularly by the suppression of CD25 surface marker expression. Furthermore, CSE interferes with the functionality of the T lymphocytes, as indicated by inhibition of degranulation, IL-2, and IFN-γ production. AP-1-and-NFAT-reporter activation was reduced implicating an AP-1-and-NFAT-mediated mode of action. The effects were in part reversed by SR144528 and A78416B, showing that the effects were mainly mediated by CB2 and TRPV1 receptors. CONCLUSION: CSE and CBD have immunomodulatory effects and interfere with the activation and functionality of T lymphocytes. A comparison between CSE and CBD suggests that the immunosuppressive effect of CSE is mostly due to the effect of CBD.
Asunto(s)
Inmunosupresores/metabolismo , Extractos Vegetales/metabolismo , Linfocitos T/inmunología , Apoptosis , Cannabis/inmunología , Degranulación de la Célula , Proliferación Celular , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Extractos Vegetales/inmunología , Psicotrópicos , Receptor Cannabinoide CB2/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismoRESUMEN
Pregnancy is a critical period for medical care, during which the well-being of woman and fetus must be considered. This is particularly relevant in managing non-psychotic mental disorders since treatment with central nervous system-active drugs and untreated NMDs may have negative effects. Some well-known herbal preparations (phytopharmaceuticals), including St. John's wort, California poppy, valerian, lavender, and hops, possess antidepressant, sedative, anxiolytic, or antidepressant properties and could be used to treat mental diseases such as depression, restlessness, and anxiety in pregnancy. Our goal was to assess their safety in vitro, focusing on cytotoxicity, induction of apoptosis, genotoxicity, and effects on metabolic properties and differentiation in cells widely used as a placental cell model (BeWo b30 placenta choriocarcinoma cells). The lavender essential oil was inconspicuous in all experiments and showed no detrimental effects. At low-to-high concentrations, no extract markedly affected the chosen safety parameters. At an artificially high concentration of 100 µg/mL, extracts from St. John's wort, California poppy, valerian, and hops had minimal cytotoxic effects. None of the extracts resulted in genotoxic effects or altered glucose consumption or lactate production, nor did they induce or inhibit BeWo b30 cell differentiation. This study suggests that all tested preparations from St. John's wort, California poppy, valerian, lavender, and hops, in concentrations up to 30 µg/mL, do not possess any cytotoxic or genotoxic potential and do not compromise placental cell viability, metabolic activity, and differentiation. Empirical and clinical studies during pregnancy are needed to support these in vitro data.
Asunto(s)
Ansiolíticos , Hypericum , Trastornos Mentales , Aceites Volátiles , Plantas Medicinales , Valeriana , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Femenino , Glucosa , Humanos , Hipnóticos y Sedantes/uso terapéutico , Lactatos , Trastornos Mentales/tratamiento farmacológico , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Fitoterapia , Placenta , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , EmbarazoRESUMEN
Equisetum arvense tea (TEA) contains high concentrations of silicon and has been used in folk medicine for the treatment of inflammatory ailments. We examined the resorption of silicon after TEA consumption. Safety and immunological effects were secondary outcomes. A monocentric, randomized, three-armed pilot study was conducted with 12 voluntary, healthy, male subjects. The study is registered in the German register for clinical trials (DRKS-ID: DRKS00016628). After a low silicon diet for 36 hours, 1000 mL TEA1 with approximately 200â000 µg silicon/L, TEA2 with approximately 750â000 µg silicon/L, or Si-low-Water (approximately 10â-â10â000 µg silicon/L as a control) were ingested on three consecutive days. Blood and urine samples were collected at baseline, day 1 examining silicon kinetics, day 3 examining silicon accumulation, and day 8 (safety, immunological parameters). Si-low-Water intake did not change silicon serum (Cmax 294 µg/L) or urine (19â000 µg/24 h) concentrations compared to baseline. Cmax was 2855 µg/L for TEA1 and 2498 µg/L for TEA2; tmax was 60 and 120 min, respectively. Silicon accumulation did not occur. Urine silica within 24 h (E24 h) was higher after TEA2 compared to TEA1 ingestion (142â000 vs. 109â000 µg/24 h). Serum silicon levels at t = 120 min differed significantly after intake of TEA2 or intake of Si-low-Water (p = 0.029). The immunological parameters did not show any significant changes indicating immunosuppressive effects in volunteers. TEA1 was well tolerated, while TEA2 caused diarrhoea in 4 subjects. Our investigations show that intake of TEA1 leads to significant rise in serum silicon concentration.
Asunto(s)
Equisetum , Silicio , Proyectos Piloto , Agua , TéRESUMEN
Some plants used in Traditional Chinese Medicine serve as treatment for disease states where a suppression of the cellular immune response is desired. However, the compounds responsible for the immunosuppressant effects of these plants are not necessarily known. The immunosuppressant compounds in the roots of Scutellaria baicalensis, one of the most promising plants identified in a previous screening, were tracked by HPLC activity profiling and concomitant on-line spectroscopic analysis. Compounds were then isolated by preparative chromatography, and structures elucidated by spectroscopic methods. Twelve flavonoids (5-16) were identified from the active time windows, and structurally related flavones 2, 4, and 17, and flavanones 1 and 3 were isolated from adjacent fractions. All flavonoids possessed an unusual substitution pattern on the B-ring, with an absence of substituents at C-3 and C-4. Compounds 11, 13, 14, and 16 inhibited T-cell proliferation (IC50 values at 12.1-39 µM) at non-cytotoxic concentrations. The findings may support the use of S. baicalensis in disorders where a modulation of the cellular immune response is desirable.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Flavonoides/farmacología , Inmunosupresores/farmacología , Activación de Linfocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Scutellaria baicalensis , Linfocitos T/efectos de los fármacos , Células Cultivadas , Flavonoides/aislamiento & purificación , Humanos , Inmunosupresores/aislamiento & purificación , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas , Scutellaria baicalensis/química , Relación Estructura-Actividad , Linfocitos T/inmunologíaRESUMEN
The cyclotide T20K inhibits the proliferation of human immune cells and is currently in clinical trials for multiple sclerosis. Here, we provide novel functional data and mechanistic insights into structure-activity relationships of T20K. Analogs with partial or complete reduction of the cystine knot had loss of function in proliferation experiments. Similarly, an acyclic analog of T20K was inactive in lymphocyte bioassays. The lack of activity of non-native peptide analogs appears to be associated with the ability of cyclotides to interact with and penetrate cell membranes, since cellular uptake studies demonstrated fast fractional transfer only of the native peptide into the cytosol of human immune cells. Therefore, structural differences between cyclic and linear native folded peptides were investigated by NMR to elucidate structure-activity relationships. Acyclic T20K had a less rigid backbone and considerable structural changes in loops 1 and 6 compared to the native cyclic T20K, supporting the idea that the cyclic cystine knot motif is a unique bioactive scaffold. This study provides evidence that this structural motif in cyclotides governs bioactivity, interactions with and transport across biological membranes, and the structural integrity of these peptides. These observations could be useful to understand the structure-activity of other cystine knot proteins due to the structural conservation of the cystine knot motif across evolution and to provide guidance for the design of novel cyclic cysteine-stabilized molecules.
Asunto(s)
Ciclotidas/química , Ciclotidas/farmacología , Motivos Nodales de Cisteina , Inmunosupresores/farmacología , Proliferación Celular/efectos de los fármacos , Ciclotidas/metabolismo , Humanos , Inmunosupresores/metabolismo , Monocitos/citología , Monocitos/efectos de los fármacos , Conformación ProteicaRESUMEN
Cyclotides are plant-derived peptides found within five families of flowering plants (Violaceae, Rubiaceae, Fabaceae, Solanaceae, and Poaceae) that have a cyclic backbone and six conserved cysteine residues linked by disulfide bonds. Their presence within the Violaceae species seems ubiquitous, yet not all members of other families produce these macrocyclic peptides. The genus Palicourea Aubl. (Rubiaceae) contains hundreds of neotropical species of shrubs and small trees; however, only a few cyclotides have been discovered hitherto. Herein, five previously uncharacterized Möbius cyclotides within Palicourea sessilis and their pharmacological activities are described. Cyclotides were isolated from leaves and stems of this plant and identified as pase A-E, as well as the known peptide kalata S. Cyclotides were de novo sequenced by MALDI-TOF/TOF mass spectrometry, and their structures were solved by NMR spectroscopy. Because some cyclotides have been reported to modulate immune cells, pase A-D were assayed for cell proliferation of human primary activated T lymphocytes, and the results showed a dose-dependent antiproliferative function. The toxicity on other nonimmune cells was also assessed. This study reveals that pase cyclotides have potential for applications as immunosuppressants and in immune-related disorders.
Asunto(s)
Ciclotidas/efectos de los fármacos , Ciclotidas/metabolismo , Fabaceae/química , Linfocitos/metabolismo , Solanaceae/química , Violaceae/química , Brasil , Ciclotidas/química , Humanos , Linfocitos/química , Linfocitos/efectos de los fármacos , Magnoliopsida , Espectrometría de Masas , Hojas de la Planta/química , Hojas de la Planta/metabolismoRESUMEN
In a screening of an extract library from plants used in Traditional Chinese Medicine the MeOH extract of Toddalia asiatica inhibited proliferation of human primary T cells with an IC50 of 25.8 µg/mL. Activity in the extract was tracked by HPLC activity profiling, and a total of 15 compounds were characterized. Three compounds, toddalic acid (6) and both enantiomers (7a and 7b) of toddanolic acid (7), were new natural products, and two recently published compounds, (2'R)-toddalolactone 3'-O-ß-d-glucopyranoside (10) and (2'S)-toddalolactone 2'-O-ß-d-glucopyranoside (11), were described in detail for the first time. The absolute configurations of compounds 8, 9, 10, 12, 13, and 15 were determined by comparison of experimental and calculated ECD spectra. For glucosides 9 and 10, ECD data and chiral-phase HPLC of the aglycones after enzymatic hydrolysis confirmed the results. Nitidine chloride (4) inhibited proliferation of primary human T cells with an IC50 of 0.4 µM.