Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891423

RESUMEN

Galactomannans are polysaccharides obtained from legume seed extraction. They present a chemical structure consisting of D-mannose chains linked by glycosidic bonds and galactose branches. The main focus lies in their use as thickeners in the food industry, aimed at improving the dielectric properties of food during heating processes within the radiofrequency and microwave ranges. In this work, the prepared galactomannan samples were electrically analyzed through impedance spectroscopy, which is a powerful physical technique. From the experimental measurements, the dielectric permittivity and loss tangent of the galactomannan solutions were analyzed and the electrical modulus formalism was used to study the dielectric relaxations. Crude galactomannans exhibited higher values of permittivity, conductivity, and losses compared to purified galactomannans. Increasing ethanol concentration in galactomannan purification causes an increase in the permittivity and conductivity of galactomannan solutions. In a 1% solution, at 1 kHz, the permittivity increased from 378.56 to 538.09, while in the 2% solution, this increase was from 656.22 to 1103.24. Regarding the conductivity, at the same frequency, the increase was from 1.6 × 10-3 to 3.3 × 10-3 Ω-1m-1 and from 2.9 × 10-3 to 5.5 × 10-3 Ω-1m-1, respectively. The rise of the ethanol concentration in galactomannan purification led to a decrease in the relaxation time, from 448.56 to 159.15 µs and from 224.81 to 89.50 µs in the solution with 1 and 2%, respectively. The results suggest that galactomannan from Adenanthera pavonina L. has potential for use in the food industry.

2.
Nanomaterials (Basel) ; 13(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37446471

RESUMEN

This work investigates the dielectric properties of barium titanate/gadolinium ferrite ceramic composites, with different concentrations of each material. Our objective was to increase the storage ability of this material, finding a compromise between high permittivity and low dielectric losses. A two-step sintering procedure was used in the preparation of the composites to attain the desired results. Their morphological, structural and electrical properties were tested using scanning electron microscopy, X-Ray powder diffraction and impedance spectroscopy, respectively. Dielectric characterizations were performed on the frequency band of 100 Hz-1 MHz and for different temperatures (180-380 K). The best compromise between barium titanate and gadolinium ferrite in the composition was calculated in order to obtain a potential material for electrical energy storage. The sample with 25% gadolinium ferrite presented the best results. The dielectric constant reached values of the order of 2000, at 1 kHz and 340 K. It was also important not to have very high losses, and this was confirmed by the calculated loss tangent.

3.
Materials (Basel) ; 16(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37241507

RESUMEN

Ferrites have been widely studied for their use in the biomedical area, mostly due to their magnetic properties, which gives them the potential to be used in diagnostics, drug delivery, and in treatment with magnetic hyperthermia, for example. In this work, KFeO2 particles were synthesized with a proteic sol-gel method using powdered coconut water as a precursor; this method is based on the principles of green chemistry. To improve its properties, the base powder obtained was subjected to multiple heat treatments at temperatures between 350 and 1300 °C. The samples obtained underwent structural, morphological, biocompatibility, and magnetic characterization. The results show that upon raising the heat treatment temperature, not only is the wanted phase detected, but also the secondary phases. To overcome these secondary phases, several different heat treatments were carried out. Using scanning electron microscopy, grains in the micrometric range were observed. Saturation magnetizations between 15.5 and 24.1 emu/g were observed for the samples containing KFeO2 with an applied field of 50 kOe at 300 K. From cellular compatibility (cytotoxicity) assays, for concentrations up to 5 mg/mL, only the samples treated at 350 °C were cytotoxic. However, the samples containing KFeO2, while being biocompatible, had low specific absorption rates (1.55-5.76 W/g).

4.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800356

RESUMEN

Tetragonal Er0.5Nb0.5O2 and monoclinic ErNbO4 micro- and nanoparticles were prepared by the citrate sol-gel method and heat-treated at temperatures between 700 and 1600 °C. ErNbO4 revealed a spherical-shaped crystallite, whose size increased with heat treatment temperatures. To assess their optical properties at room temperature (RT), a thorough spectroscopic study was conducted. RT photoluminescence (PL) spectroscopy revealed that Er3+ optical activation was achieved in all samples. The photoluminescence spectra show the green/yellow 2H11/2, 4S3/2→4I15/2 and red 4F9/2→4I15/2 intraionic transitions as the main visible recombination, with the number of the crystal field splitting Er3+ multiplets reflecting the ion site symmetry in the crystalline phases. PL excitation allows the identification of Er3+ high-energy excited multiplets as the preferential population paths of the emitting levels. Independently of the crystalline structure, the intensity ratio between the green/yellow and red intraionic transitions was found to be strongly sensitive to the excitation energy. After pumping the samples with a resonant excitation into the 4G11/2 excited multiplet, a green/yellow transition stronger than the red one was observed, whereas the reverse occurred for higher excitation photon energies. Thus, a controllable selective excited tunable green to red color was achieved, which endows new opportunities for photonic and optoelectronic applications.

5.
Nanomaterials (Basel) ; 11(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466651

RESUMEN

The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of ε' (≈10 up to ≈14) with a tanδ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g-1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA