Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 13(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38392339

RESUMEN

Wolbachia is a widespread and well-known bacterium that can induce a wide range of changes within its host. Ants specifically harbor a great deal of Wolbachia diversity and are useful systems to study endosymbiosis. The turtle ants (Cephalotes) are a widespread group of tropical ants that rely on gut microbes to support their herbivorous diet for their survival, yet little is known of the extent of this diversity. Therefore, studying their endosymbionts and categorizing the diversity of bacteria within Cephalotes hosts could help to delimit species and identify new strains and can help lead to a further understanding of how the microbiome leads to survival and speciation in the wild. In our study, 116 individual samples were initially tested for positive infection with the wsp gene. Of the initial 116 samples, 9 samples were infected with only one strain of Wolbachia, and 7 were able to be used successfully for multilocus sequence typing (MLST). We used the new MLST data to infer a phylogeny with other Formicidae samples from the MLST online database to identify new Wolbachia strains and related genes, of which only one came back as an exact match. The 18 Wolbachia-positive samples ranged across 15 different species and 7 different countries, which we further test for species identity and geographic correlation. This study is the first comprehensive look into the diversity of Wolbachia in the turtle ants, providing insight into how endosymbionts are oriented in widespread species and providing a strong foundation for further research in host-microbe interactions.

2.
Microb Ecol ; 86(2): 1240-1253, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36352137

RESUMEN

Bacterial communities in animals are often necessary for hosts to survive, particularly for hosts with nutrient-limited diets. The composition, abundance, and richness of these bacterial communities may be shaped by host identity and external ecological factors. The turtle ants (genus Cephalotes) are predominantly herbivorous and known to rely on bacterial communities to enrich their diet. Cephalotes have a broad Neotropical distribution, with high diversity in the South American Cerrado, a geologically and biologically diverse savanna. Using 16S rRNA amplicon sequencing, we examined the bacterial communities of forty-one Cephalotes samples of sixteen different species collected from multiple locations across two sites in the Cerrado (MG, Brazil) and compared the bacterial communities according to elevation, locality, species, and species group, defined by host phylogeny. Beta diversity of bacterial communities differed with respect to all categories but particularly strongly when compared by geographic location, species, and species group. Differences seen in species and species groups can be partially explained by the high abundance of Mesorhizobium in Cephalotes pusillus and Cephalotes depressus species groups, when compared to other clades via the Analysis of Composition of Microbiome (ANCOM). Though the Cephalotes bacterial community is highly conserved, results from this study indicate that multiple external factors can affect and change bacterial community composition and abundance.


Asunto(s)
Hormigas , Microbiota , Animales , Hormigas/microbiología , ARN Ribosómico 16S/genética , Filogenia , Geografía , Bacterias/genética
3.
Nat Ecol Evol ; 6(11): 1687-1699, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36216903

RESUMEN

Data suggest that the malaria vector mosquito Anopheles coluzzii persists during the dry season in the Sahel through a dormancy mechanism known as aestivation; however, the contribution of aestivation compared with alternative strategies such as migration is unknown. Here we marked larval Anopheles mosquitoes in two Sahelian villages in Mali using deuterium (2H) to assess the contribution of aestivation to persistence of mosquitoes through the seven-month dry season. After an initial enrichment period, 33% of An. coluzzii mosquitoes were strongly marked. Seven months following enrichment, multiple analysis methods supported the ongoing presence of marked mosquitoes, compatible with the prediction that the fraction of marked mosquitoes should remain stable throughout the dry season if local aestivation is occurring. The results suggest that aestivation is a major persistence mechanism of An. coluzzii in the Sahel, contributing at least 20% of the adults at the onset of rains. This persistence strategy could influence mosquito control and malaria elimination campaigns.


Asunto(s)
Anopheles , Malaria , Animales , Estivación , Estaciones del Año , Mosquitos Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA