Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sensors (Basel) ; 24(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39204936

RESUMEN

Aquaculture is expected to play a vital role in solving the challenge of sustainably providing the growing world population with healthy and nutritious food. Pathogen outbreaks are a major risk for the sector, so early detection and a timely response are crucial. This can be enabled by monitoring the pathogen levels in aquaculture facilities. This paper describes a photonic biosensing platform based on silicon nitride waveguide technology with integrated active components, which could be used for such applications. Compared to the state of the art, the current system presents improvements in terms of miniaturization of the Photonic Integrated Circuit (PIC) and the development of wafer-level processes for hybrid integration of active components and for material-selective chemical and biological surface modification. Furthermore, scalable processes for integrating the PIC in a microfluidic cartridge were developed, as well as a prototype desktop readout instrument. Three bacterial aquaculture pathogens (Aeromonas salmonicida, Vagococcus salmoninarum, and Yersinia ruckeri) were selected for assay development. DNA biomarkers were identified, corresponding primer-probe sets designed, and qPCR assays developed. The biomarker for Aeromonas was also detected using the hybrid PIC platform. This is the first successful demonstration of biosensing on the hybrid PIC platform.


Asunto(s)
Acuicultura , Técnicas Biosensibles , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Fotones , Animales , Compuestos de Silicona/química
2.
Biomed Microdevices ; 26(2): 18, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416278

RESUMEN

High-throughput transcriptomics is of increasing fundamental biological and clinical interest. The generation of molecular data from large collections of samples, such as biobanks and drug libraries, is boosting the development of new biomarkers and treatments. Focusing on gene expression, the transcriptomic market exploits the benefits of next-generation sequencing (NGS), leveraging RNA sequencing (RNA-seq) as standard for measuring genome-wide gene expression in biological samples. The cumbersome sample preparation, including RNA extraction, conversion to cDNA and amplification, prevents high-throughput translation of RNA-seq technologies. Bulk RNA barcoding and sequencing (BRB-seq) addresses this limitation by enabling sample preparation in multi-well plate format. Sample multiplexing combined with early pooling into a single tube reduces reagents consumption and manual steps. Enabling simultaneous pooling of all samples from the multi-well plate into one tube, our technology relies on smart labware: a pooling lid comprising fluidic features and small pins to transport the liquid, adapted to standard 96-well plates. Operated with standard fluidic tubes and pump, the system enables over 90% recovery of liquid in a single step in less than a minute. Large scale manufacturing of the lid is demonstrated with the transition from a milled polycarbonate/steel prototype into an injection molded polystyrene lid. The pooling lid demonstrated its value in supporting high-throughput barcode-based sequencing by pooling 96 different DNA barcodes directly from a standard 96-well plate, followed by processing within the single sample pool. This new pooling technology shows great potential to address medium throughput needs in the BRB-seq workflow, thereby addressing the challenge of large-scale and cost-efficient sample preparation for RNA-seq.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN , Heces
3.
Sensors (Basel) ; 21(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806753

RESUMEN

In this paper, we present the development of a photonic biosensor device for cancer treatment monitoring as a complementary diagnostics tool. The proposed device combines multidisciplinary concepts from the photonic, nano-biochemical, micro-fluidic and reader/packaging platforms aiming to overcome limitations related to detection reliability, sensitivity, specificity, compactness and cost issues. The photonic sensor is based on an array of six asymmetric Mach Zender Interferometer (aMZI) waveguides on silicon nitride substrates and the sensing is performed by measuring the phase shift of the output signal, caused by the binding of the analyte on the functionalized aMZI surface. According to the morphological design of the waveguides, an improved sensitivity is achieved in comparison to the current technologies (<5000 nm/RIU). This platform is combined with a novel biofunctionalization methodology that involves material-selective surface chemistries and the high-resolution laser printing of biomaterials resulting in the development of an integrated photonics biosensor device that employs disposable microfluidics cartridges. The device is tested with cancer patient blood serum samples. The detection of periostin (POSTN) and transforming growth factor beta-induced protein (TGFBI), two circulating biomarkers overexpressed by cancer stem cells, is achieved in cancer patient serum with the use of the device.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Humanos , Interferometría , Neoplasias/diagnóstico , Neoplasias/terapia , Óptica y Fotónica , Fotones , Reproducibilidad de los Resultados
4.
J Lab Autom ; 16(2): 105-11, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21609691

RESUMEN

The global demand for the reduction of animal testing has led to the emergence of Zebrafish eggs/larvae as model organisms to replace current adult animal testing in, for example, toxicity testing. Because of the egg size (diameter 1.6mm) and the relatively easy maintenance of Zebrafish farms the eggs also offer high-throughput screening (HTS). However, the current bottleneck for HTS is the cost-efficient placing of individual organisms into single wells of a multiwell plate (MWP). The system presented here is capable of storing, sorting, and placing individual organisms in a highly reproducible manner. In about 11 min a complete 96-MWP is filled, which corresponds to about 8 sec per egg. The survival rate of fertilized transgenic and wild-type eggs was comparable to the one of the control (control 6.7%, system 7.6%). Furthermore, it was also possible to place dechorionated eggs into individual wells. The results demonstrate that the cost efficient system works gentle and reliable enough to disburden scientists from the exhausting and monotonous job of placing single eggs into single wells, such that they can concentrate on the scientific aspects of their experiments and create results with a higher statistical relevance.


Asunto(s)
Óvulo/clasificación , Pez Cebra , Animales , Hidrobiología/métodos , Organismos Modificados Genéticamente , Reproducibilidad de los Resultados , Análisis de Supervivencia , Pruebas de Toxicidad/métodos , Toxicología/métodos
5.
J Lab Autom ; 16(3): 186-96, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21609701

RESUMEN

Microinjection is the most flexible transfection method in terms of choice of reagents to inject into cells. But this method lacks the high throughput to compete with less flexible methods like chemical- or viral-based approaches. Various approaches have been pursued to increase the throughput by automating the microinjection process. However, these approaches focused solely on the microinjection itself and disregarded the tasks before and after the injection, which also belong to the critical time path of the whole process, that is, sorting out viable cells from a cell suspension, placing the cell for injection, and collecting the cell after the injection. In the approach with our XenoFactor, we demonstrate a system capable of running the whole process automatically. By optimizing the XenoFactor for Xenopus laevis oocytes, we could demonstrate the successful automated injection. Starting from a suspension with a mixture of defolliculated oocytes at different stages and quality levels, the manual approach requires 1 day in total for the preparation of 400 microinjected oocytes. The XenoFactor takes only 4h for the same amount and delivers injected oocytes of reproducible quality and without the fatigue symptoms experienced during the manual approach.


Asunto(s)
Automatización de Laboratorios/métodos , Microinyecciones/instrumentación , Microinyecciones/métodos , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Animales , Transporte de Proteínas , Transfección/métodos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA