Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Anal Chem ; 95(37): 13932-13940, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37676066

RESUMEN

In environmental research, it is critical to understand how toxins impact invertebrate eggs and egg banks, which, due to their tiny size, are very challenging to study by conventional nuclear magnetic resonance (NMR) spectroscopy. Microcoil technology has been extensively utilized to enhance the mass-sensitivity of NMR. In a previous study, 5-axis computer numerical control (CNC) micromilling (shown to be a viable alternative to traditional microcoil production methods) was used to create a prototype copper slotted-tube resonator (STR). Despite the excellent limit of detection (LOD) of the resonator, the quality of the line shape was very poor due to the magnetic susceptibility of the copper resonator itself. This is best solved using magnetic susceptibility-matched materials. In this study, approaches are investigated that improve the susceptibility while retaining the versatility of coil milling. One method involves machining STRs from various copper/aluminum alloys, while the other involves machining ones from an aluminum 2011 alloy and electroplating them with copper. In all cases, combining copper and aluminum to produce resonators resulted in improved line shape and SNR compared to pure copper resonators due to their reduced magnetic susceptibility. However, the copper-plated aluminum resonators showed optimal performance from the devices tested. The enhanced LOD of these STRs allowed for the first 1H-13C heteronuclear multiple quantum coherence (HMQC) of a single intact 13C-labeled Daphnia magna egg (∼4 µg total biomass). This is a key step toward future screening programs that aim to elucidate the toxic processes in aquatic eggs.


Asunto(s)
Aluminio , Cobre , Animales , Aleaciones , Biomasa , Daphnia
2.
Anal Chem ; 95(14): 5858-5866, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36996326

RESUMEN

Toxicity testing is currently undergoing a paradigm shift from examining apical end points such as death, to monitoring sub-lethal toxicity in vivo. In vivo nuclear magnetic resonance (NMR) spectroscopy is a key platform in this endeavor. A proof-of-principle study is presented which directly interfaces NMR with digital microfluidics (DMF). DMF is a "lab on a chip" method allowing for the movement, mixing, splitting, and dispensing of µL-sized droplets. The goal is for DMF to supply oxygenated water to keep the organisms alive while NMR detects metabolomic changes. Here, both vertical and horizontal NMR coil configurations are compared. While a horizontal configuration is ideal for DMF, NMR performance was found to be sub-par and instead, a vertical-optimized single-sided stripline showed most promise. In this configuration, three organisms were monitored in vivo using 1H-13C 2D NMR. Without support from DMF droplet exchange, the organisms quickly showed signs of anoxic stress; however, with droplet exchange, this was completely suppressed. The results demonstrate that DMF can be used to maintain living organisms and holds potential for automated exposures in future. However, due to numerous limitations of vertically orientated DMF, along with space limitations in standard bore NMR spectrometers, we recommend future development be performed using a horizontal (MRI style) magnet which would eliminate practically all the drawbacks identified here.


Asunto(s)
Imagen por Resonancia Magnética , Microfluídica , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Dispositivos Laboratorio en un Chip
3.
Artículo en Inglés | MEDLINE | ID: mdl-36880969

RESUMEN

In this work, we investigated the sliding friction measured between poly(methyl methacrylate) (PMMA) colloidal probes with two different diameters D (1.5 and 15 µm) and laser-induced periodic surface structures (LIPSS) on stainless steel with periodicities Λ of 0.42 and 0.9 µm, when the probes are elastically driven along two directions, perpendicular and parallel to the LIPSS. The time evolution of the friction shows the characteristic features of a reverse stick-slip mechanism recently reported on periodic gratings. The morphologies of colloidal probes and modified steel surfaces are geometrically convoluted in the atomic force microscopy (AFM) topographies simultaneously recorded with the friction measurements. The LIPSS periodicity is only revealed with smaller probes (D = 1.5 µm) and when Λ takes the largest value of 0.9 µm. The average value of the friction force is found to be proportional to the normal load, with a coefficient of friction µ varying between 0.23 and 0.54. The values of µ are rather independent of the direction of motion, and they reach their maximum when the small probe is scanned on the LIPSS with the larger periodicity. The friction is also found to decrease with increasing velocity in all cases, which is attributed to the corresponding decrease of the viscoelastic contact time. These results can be used to model the sliding contacts formed by a set of spherical asperities of different sizes driven on a rough solid surface.

4.
Anal Chem ; 94(24): 8756-8765, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35675504

RESUMEN

Comprehensive multiphase-nuclear magnetic resonance (CMP-NMR) is a non-invasive approach designed to observe all phases (solutions, gels, and solids) in intact samples using a single NMR probe. Studies of dead and living organisms are important to understand processes ranging from biological growth to environmental stress. Historically, such studies have utilized 1H-based phase editing for the detection of soluble/swollen components and 1H-detected 2D NMR for metabolite assignments/screening. However, living organisms require slow spinning rates (∼500 Hz) to increase survivability, but at such low speeds, complications from water sidebands and spectral overlap from the modest chemical shift window (∼0-10 ppm) make 1H NMR challenging. Here, a novel 13C-optimized E-Free magic angle spinning CMP probe is applied to study all phases in ex vivo and in vivo samples. This probe consists of a two-coil design, with an inner single-tuned 13C coil providing a 113% increase in 13C sensitivity relative to a traditional multichannel single-CMP coil design. For organisms with a large biomass (∼0.1 g) like the Ganges River sprat (ex vivo), 13C-detected full spectral editing and 13C-detected heteronuclear correlation (HETCOR) can be performed at natural abundance. Unfortunately, for a single living shrimp (∼2 mg), 13C enrichment was still required, but 13C-detected HETCOR shows superior data relative to heteronuclear single-quantum coherence at low spinning speeds (due to complications from water sidebands in the latter). The probe is equipped with automatic-tuning-matching and is compatible with automated gradient shimming─a key step toward conducting multiphase screening of dead and living organisms under automation in the near future.


Asunto(s)
Carbono , Agua , Isótopos de Carbono , Espectroscopía de Resonancia Magnética
5.
Magn Reson Chem ; 60(3): 386-397, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34647646

RESUMEN

Microcoils provide a cost-effective approach to improve detection limits for mass-limited samples. Single-sided planar microcoils are advantageous in comparison to volume coils, in that the sample can simply be placed on top. However, the considerable drawback is that the RF field that is produced by the coil decreases with distance from the coil surface, which potentially limits more complex multi-pulse NMR pulse sequences. Unfortunately, 1 H NMR alone is not very informative for intact biological samples due to line broadening caused by magnetic susceptibility distortions, and 1 H-13 C 2D NMR correlations are required to provide the additional spectral dispersion for metabolic assignments in vivo or in situ. To our knowledge, double-tuned single-sided microcoils have not been applied for the 2D 1 H-13 C analysis of intact 13 C enriched biological samples. Questions include the following: Can 1 H-13 C 2D NMR be performed on single-sided planar microcoils? If so, do they still hold sensitivity advantages over conventional 5 mm NMR technology for mass limited samples? Here, 2D 1 H-13 C HSQC, HMQC, and HETCOR variants were compared and then applied to 13 C enriched broccoli seeds and Daphnia magna (water fleas). Compared to 5 mm NMR probes, the microcoils showed a sixfold improvement in mass sensitivity (albeit only for a small localized region) and allowed for the identification of metabolites in a single intact D. magna for the first time. Single-sided planar microcoils show practical benefit for 1 H-13 C NMR of intact biological samples, if localized information within ~0.7 mm of the 1 mm I.D. planar microcoil surface is of specific interest.


Asunto(s)
Daphnia , Imagen por Resonancia Magnética , Animales , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular
6.
Nanomaterials (Basel) ; 11(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947674

RESUMEN

Laser-induced periodic surface structures (LIPSS) are a simple and robust route for the nanostructuring of solids that can create various surface functionalities featuring applications in optics, medicine, tribology, energy technologies, etc. While the current laser technologies already allow surface processing rates at the level of m2/min, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry, as well as by limitations in controlling the processing of LIPSS and in the long-term stability of the created surface functions. This Perspective article aims to identify some open questions about LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, we intend to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry.

7.
Materials (Basel) ; 14(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34501069

RESUMEN

Tailored intensity profiles within the focal spot of the laser beam offer great potential for a well-defined control of the interaction process between laser radiation and material, and thus for improving the processing results. The present paper discusses a novel refractive beam-shaping element that provides different squared intensity distributions converted from the Gaussian output beam of the utilized femtosecond (fs) laser. Using the examples of surface structuring of stainless-steel on the micro- and nano-scale, the suitability of the beam-shaping element for fs-laser material processing with a conventional f-Theta lens is demonstrated. In this context, it was shown that the experimental structuring results are in good agreement with beam profile measurements and numerical simulations of the beam-shaping unit. In addition, the experimental results reveal the improvement of laser processing in terms of a significantly reduced processing time during surface nano-structuring and the possibility to control the ablation geometry during the fabrication of micro-channels.

8.
Anal Chem ; 93(29): 10326-10333, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34259008

RESUMEN

Comprehensive multiphase (CMP) NMR, first described in 2012, combines all of the hardware components necessary to analyze all phases (solid, gel, and solution) in samples in their natural state. In combination with spectral editing experiments, it can fully differentiate phases and study the transfer of chemical species across and between phases, providing unprecedented molecular-level information in unaltered natural systems. However, many natural samples, such as swollen soils, plants, and small organisms, contain water, salts, and ionic compounds, making them electrically lossy and susceptible to RF heating, especially when using high-strength RF fields required to select the solid domains. While dedicated reduced-heating probes have been developed for solid-state NMR, to date, all CMP-NMR probes have been based on solenoid designs, which can lead to problematic sample heating. Here, a new prototype CMP probe was developed, incorporating a loop gap resonator (LGR) for decoupling. Temperature increases are monitored in salt solutions analogous to those in small aquatic organisms and then tested in vivo on Hyalella azteca (freshwater shrimp). In the standard CMP probe (solenoid), 80% of organisms died within 4 h under high-power decoupling, while in the LGR design, all organisms survived the entire test period of 12 h. The LGR design reduced heating by a factor of ∼3, which allowed 100 kHz decoupling to be applied to salty samples with generally ≤10 °C sample heating. In addition to expanding the potential for in vivo research, the ability to apply uncompromised high-power decoupling could be beneficial for multiphase samples containing true crystalline solids that require the strongest possible decoupling fields for optimal detection.


Asunto(s)
Calefacción , Calor , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Ondas de Radio
9.
Analyst ; 146(14): 4461-4472, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34136891

RESUMEN

Comprehensive multiphase NMR combines the ability to study and differentiate all phases (solids, gels, and liquids) using a single NMR probe. The general goal of CMP-NMR is to study intact environmental and biological samples to better understand conformation, organization, association, and transfer between and across phases/interfaces that may be lost with conventional sample preparation such as drying or solubilization. To date, all CMP-NMR studies have used 4 mm probes and rotors. Here, a larger 7 mm probehead is introduced which provides ∼3 times the volume and ∼2.4 times the signal over a 4 mm version. This offers two main advantages: (1) the additional biomass reduces experiment time, making 13C detection at natural abundance more feasible; (2) it allows the analysis of larger samples that cannot fit within a 4 mm rotor. Chicken heart tissue and Hyalella azteca (freshwater shrimp) are used to demonstrate that phase-based spectral editing works with 7 mm rotors and that the additional biomass from the larger volumes allows detection with 13C at natural abundance. Additionally, a whole pomegranate seed berry (aril) and an intact softgel capsule of hydroxyzine hydrochloride are used to demonstrate the analysis of samples too large to fit inside a conventional 4 mm CMP probe. The 7 mm version introduced here extends the range of applications and sample types that can be studied and is recommended when 4 mm CMP probes cannot provide adequate signal-to-noise (S/N), or intact samples are simply too big for 4 mm rotors.


Asunto(s)
Imagen por Resonancia Magnética , Biomasa , Espectroscopía de Resonancia Magnética
10.
Materials (Basel) ; 14(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800908

RESUMEN

We present a unique dual laser beam processing approach based on excited state absorption by structuring 200 nm thin zinc oxide films sputtered on fused silica substrates. The combination of two pulsed nanosecond-laser beams with different photon energies-one below and one above the zinc oxide band gap energy-allows for a precise, efficient, and homogeneous ablation of the films without substrate damage. Based on structuring experiments in dependence on laser wavelength, pulse fluence, and pulse delay of both laser beams, a detailed concept of energy transfer and excitation processes during irradiation was developed. It provides a comprehensive understanding of the thermal and electronic processes during ablation. To quantify the efficiency improvements of the dual-beam process compared to single-beam ablation, a simple efficiency model was developed.

11.
Anal Chem ; 92(23): 15454-15462, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33170641

RESUMEN

The superior mass sensitivity of microcoil technology in nuclear magnetic resonance (NMR) spectroscopy provides potential for the analysis of extremely small-mass-limited samples such as eggs, cells, and tiny organisms. For optimal performance and efficiency, the size of the microcoil should be tailored to the size of the mass-limited sample of interest, which can be costly as mass-limited samples come in many shapes and sizes. Therefore, rapid and economic microcoil production methods are needed. One method with great potential is 5-axis computer numerical control (CNC) micromilling, commonly used in the jewelry industry. Most CNC milling machines are designed to process larger objects and commonly have a precision of >25 µm (making the machining of common spiral microcoils, for example, impossible). Here, a 5-axis MiRA6 CNC milling machine, specifically designed for the jewelry industry, with a 0.3 µm precision was used to produce working planar microcoils, microstrips, and novel microsensor designs, with some tested on the NMR in less than 24 h after the start of the design process. Sample wells could be built into the microsensor and could be machined at the same time as the sensors themselves, in some cases leaving a sheet of Teflon as thin as 10 µm between the sample and the sensor. This provides the freedom to produce a wide array of designs and demonstrates 5-axis CNC micromilling as a versatile tool for the rapid prototyping of NMR microsensors. This approach allowed the experimental optimization of a prototype microstrip for the analysis of two intact adult Daphnia magna organisms. In addition, a 3D volume slotted-tube resonator was produced that allowed for 2D 1H-13C NMR of D. magna neonates and exhibited 1H sensitivity (nLODω600 = 1.49 nmol s1/2) close to that of double strip lines, which themselves offer the best compromise between concentration and mass sensitivity published to date.


Asunto(s)
Costos y Análisis de Costo , Espectroscopía de Resonancia Magnética/economía , Espectroscopía de Resonancia Magnética/instrumentación , Microtecnología/instrumentación , Animales , Daphnia/química , Diseño de Equipo , Fenómenos Mecánicos , Factores de Tiempo
12.
Nanomaterials (Basel) ; 10(6)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570904

RESUMEN

Despite intensive research activities in the field of laser-induced periodic surface structures (LIPSS), the large-area nanostructuring of glasses is still a challenging problem, which is mainly caused by the strongly non-linear absorption of the laser radiation by the dielectric material. Therefore, most investigations are limited to single-spot experiments on different types of glasses. Here, we report the homogeneous generation of LIPSS on large-area surfaces of fused silica using thin gold layers and a fs-laser with a wavelength λ = 1025 nm, a pulse duration τ = 300 fs, and a repetition frequency frep = 100 kHz as radiation source. For this purpose, single-spot experiments are performed to study the LIPSS formation process as a function of laser parameters and gold layer thickness. Based on these results, the generation of large-area homogenous LIPSS pattern was investigated by unidirectional scanning of the fs-laser beam across the sample surface using different line spacing. The nanostructures are characterized by a spatial period of about 360 nm and a modulation depth of around 160 nm. Chemical surface analysis by Raman spectroscopy confirms a complete ablation of the gold film by the fs-laser irradiation. The characterization of the functional properties shows an increased transmission of the nanostructured samples accompanied by a noticeable change in the wetting properties, which can be additionally modified within a wide range by silanization. The presented approach enables the reproducible LIPSS-based laser direct-writing of sub-wavelength nanostructures on glasses and thus provides a versatile and flexible tool for novel applications in the fields of optics, microfluidics, and biomaterials.

13.
Anal Chim Acta X ; 6: 100051, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33392494

RESUMEN

Nuclear Magnetic Resonance (NMR) spectroscopy is a non-invasive analytical technique which allows for the study of intact samples. Comprehensive Multiphase NMR (CMP-NMR) combines techniques and hardware from solution state and solid state NMR to allow for the holistic analysis of all phases (i.e. solutions, gels and solids) in unaltered samples. This study is the first to apply CMP-NMR to deceased, intact organisms and uses 13C enriched Daphnia magna (water fleas) as an example. D. magna are commonly used model organisms for environmental toxicology studies. As primary consumers, they are responsible for the transfer of nutrients across trophic levels, and a decline in their population can potentially impact the entire freshwater aquatic ecosystem. Though in vivo research is the ultimate tool to understand an organism's most biologically relevant state, studies are limited by conditions (i.e. oxygen requirements, limited experiment time and reduced spinning speed) required to keep the organisms alive, which can negatively impact the quality of the data collected. In comparison, ex vivo CMP-NMR is beneficial in that; organisms do not need oxygen (eliminating air holes in rotor caps and subsequent evaporation); samples can be spun faster, leading to improved spectral resolution; more biomass per sample can be analyzed; and experiments can be run for longer. In turn, higher quality ex vivo NMR, can provide more comprehensive NMR assignments, which in many cases could be transferred to better understand less resolved in vivo signals. This manuscript is divided into three sections: 1) multiphase spectral editing techniques, 2) detailed metabolic assignments of 2D NMR of 13C enriched D. magna and 3) multiphase biological changes over different life stages, ages and generations of D. magna. In summary, ex vivo CMP-NMR proves to be a very powerful approach to study whole organisms in a comprehensive manner and should provide very complementary information to in vivo based research.

14.
Langmuir ; 35(47): 14990-14998, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31687824

RESUMEN

Femtosecond (fs) laser-induced periodic surface structures (LIPSS) were selectively generated on the surface of an Ag-Si alloy consisting of a metallic and a semiconducting phase. For this purpose, the alloy was irradiated with linearly polarized fs-laser pulses (τ = 300 fs, λ = 1025 nm, frep = 100 kHz) using a laser peak fluence F = 0.30 J/cm2. Due to the different light absorption behaviors of the semiconductor (Si) and the metal (Ag) phases that result in different ablation thresholds of the respective phases, pronounced LIPSS with a period of Λ ≈ 950 nm and a modulation depth of h ≈ 220 nm were generated solely on the Si phase. The alloy surface was characterized by scanning electron microscopy, optical microscopy, white-light interference microscopy, and atomic force microscopy before and after laser irradiation. The chemical analysis was carried out by energy-dispersive X-ray spectroscopy, revealing surface oxidation of the Si phase and no laser-induced chemical modification of the Ag phase. The surface wettability of the alloy was evaluated with distilled water and compared to those of the single constituents of the composites. After fs-laser irradiation, the surface is characterized by a reduced hydrophilic water contact angle. Furthermore, the alloy selectively structured with LIPSS revealed a droplet shape change due to the distinctly different contact angles on the Si (θ = 5°) and Ag (θ = 74°) phases. This phenomenon was evaluated and discussed by local contact angle analyses using a confocal laser scanning microscope and Rhodamine B dye. In addition, it was shown that the shape change due to different contact angles of the components allowed a targeted droplet movement on a macroscopic material boundary (Ag/Si) of the alloy. Selectively structured metal/semiconductor surfaces might be of particular interest for microfluidic devices with a directional droplet movement and for the fundamental research of wettability.

15.
Materials (Basel) ; 11(8)2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072643

RESUMEN

The formation and properties of laser-induced periodic surface structures (LIPSS) were investigated upon fs-laser irradiation of fused silica at different initial substrate temperatures, TS. For substrate heating between room temperature, TRT, and TS = 1200 °C, a continuous wave CO2 laser was used as the radiation source. The surface structures generated in the air environment at normal incidence with five successive fs-laser pulses (pulse duration, τ = 300 fs, laser wavelength, λ = 1025 nm, repetition frequency, frep = 1 kHz) were characterized by using optical microscopy, scanning electron microscopy, and 2D-Fourier transform analysis. The threshold fluence of fused silica was systematically investigated as a function of TS. It was shown that the threshold fluence for the formation of low-spatial frequency LIPSS (LSFL) decreases with increasing TS. The results reveal that the initial spatial period observed at TRT is notably increased by increasing TS, finally leading to the formation of supra-wavelength LIPSS. The findings are discussed in the framework of the electromagnetic interference theory, supplemented with an analysis based on thermo-convective instability occurring in the laser-induced molten layer. Our findings provide qualitative insights into the formation mechanisms of LIPSS, which allow improvements of the control of nanostructure formation to be made for corresponding applications of dielectric materials in the future.

16.
Materials (Basel) ; 11(5)2018 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-29757240

RESUMEN

Hierarchical surface structures were fabricated on fused silica by using a fs-laser with a pulse duration τ = 300 fs and a wavelength λ = 512 nm. The resulting surface structures were characterized by scanning electron microscopy, atomic force microscopy and white light interference microscopy. The optical properties were analyzed by transmittance measurements using an integrating sphere and the wettability was evaluated by measuring the water contact angle θ. The silanization of structured fused silica surfaces with trichloro(1H,1H,2H,2H-perfluorooctyl)silane allows to switch the wettability from superhydrophilic (θ = 0°) to superhydrophobic behavior with θ exceeding 150°. It was shown that the structured silica surfaces are a suitable master for negative replica casting and that the hierarchical structures can be transferred to polystyrene. The transmittance of structured fused silica surfaces decreases only slightly when compared to unstructured surfaces, which results in high transparency of the structured samples. Our findings facilitate the fabrication of transparent glass samples with tailored wettability. This might be of particular interest for applications in the fields of optics, microfluidics, and biomaterials.

17.
Polymers (Basel) ; 10(11)2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30961130

RESUMEN

The influence of optical excitation intensity on the electrical, ferroelectric and pyroelectric properties of ferroelectric-semiconductor-composites was investigated. For this purpose, composite thin films consisting of poly(vinylidene fluoride-co-trifluoroethylene) and 10 vol % (Cd:Zn)S particles with a thickness of 34 µm were fabricated. The samples were used to measure the absolute pyrocoefficient and to determine the relative pyroelectric depth profile using Laser Intensity Modulated Method. It was shown that a polarization of the samples without an optical excitation at the utilized relatively small peak-to-peak voltages could not be verified by the Sawyer⁻Tower circuit and the measurement setup of the pyroelectric coefficient, respectively. Both remanent polarization and pyroelectric coefficients increased with increasing optical excitation intensity during poling as well as increasing peak-to-peak voltage. The pyrocoefficient shows a temporal decay in the first hours after poling. The specific heat and thermal conductivity or the thermal diffusivity are required for the calibration of the pyroelectric depth profile. Rule of mixture and photo-acoustic investigations proved that the thermal properties of the utilized composites do not differ significantly from those of the pristine polymer. Based on the pyroelectric depth profile which is proportional to the polarization profile, the existing "three phase model" has been extended to generate a replacement circuit diagram, explaining the local polarization due to the optical excitation dependency for both local resistivity and local field strength.

18.
Materials (Basel) ; 10(8)2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28796180

RESUMEN

The formation and properties of laser-induced periodic surface structures (LIPSS) was investigated on different technically relevant glasses including fused silica, borosilicate glass, and soda-lime-silicate glass under irradiation of fs-laser pulses characterized by a pulse duration τ = 300 fs and a laser wavelength λ = 1025 nm. For this purpose, LIPSS were fabricated in an air environment at normal incidence with different laser peak fluence, pulse number, and repetition frequency. The generated structures were characterized by using optical microscopy, scanning electron microscopy, focused ion beam preparation and Fast-Fourier transformation. The results reveal the formation of LIPSS on all investigated glasses. LIPSS formation on soda-lime-silicate glass is determined by remarkable melt-formation as an intra-pulse effect. Differences between the different glasses concerning the appearing structures, their spatial period and their morphology were discussed based on the non-linear absorption behavior and the temperature-dependent viscosity. The findings facilitate the fabrication of tailored LIPSS-based surface structures on different technically relevant glasses that could be of particular interest for various applications.

19.
Environ Sci Technol ; 51(11): 5932-5940, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28445044

RESUMEN

Highly oxygenated multifunctional organic compounds (HOMs) originating from biogenic emissions constitute a widespread source of organic aerosols in the pristine atmosphere. However, the molecular forms in which HOMs are present in the condensed phase upon gas-particle partitioning remain unclear. In this study, we show that highly oxygenated molecules that contain multiple peroxide functionalities are readily cationized by the attachment of Na+ during electrospray ionization operated in the positive ion mode. With this method, we present the first identification of HOMs characterized as C8-10H12-18O4-9 monomers and C16-20H24-36O8-14 dimers in α-pinene derived secondary organic aerosol (SOA). Simultaneous detection of these molecules in the gas phase provides direct evidence for their gas-to-particle conversion. Molecular properties of particulate HOMs generated from ozonolysis and OH oxidation of unsubstituted (C10H16) and deuterated (C10H13D3) α-pinene are investigated using coupled ion mobility spectrometry with mass spectrometry. The systematic shift in the mass of monomers in the deuterated system is consistent with the decomposition of isomeric vinylhydroperoxides to release vinoxy radical isotopologues, the precursors to a sequence of autoxidation reactions that ultimately yield HOMs in the gas phase. The remarkable difference observed in the dimer abundance under O3- versus OH-dominant environments underlines the competition between intramolecular hydrogen migration of peroxy radicals and their bimolecular termination reactions. Our results provide new and direct molecular-level information for a key component needed for achieving carbon mass closure of α-pinene SOA.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monoterpenos , Monoterpenos Bicíclicos , Ozono
20.
Polymers (Basel) ; 9(12)2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30965949

RESUMEN

The influence of semiconductor particle concentration and photoexcitation on the electrical and ferroelectric properties of ferroelectric-semiconductor-composites was investigated. For this purpose, 32 µm thin films of poly(vinylidene fluoride-co-trifluoroethylene) with (Cd:Zn)S particle concentrations of between 0 and 20 vol % were fabricated and characterized by scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and optical spectroscopy. It was shown that the particle concentration has only a negligible influence on the molecular structure of the polymer but strongly determines the optical properties of the composite. For (Cd:Zn)S particle concentrations below 20 vol %, the I-V characteristics of the composites is only marginally affected by the particle concentration and the optical excitation of the composite material. On the contrary, a strong influence of both parameters on the ferro- and pyroelectric properties of the composite films was observed. For particle fractions that exhibit ferroelectric hysteresis, an increased remanent polarization and pyroelectric coefficient due to optical excitation was obtained. A theoretical approach that is based on a "three phase model" of the internal structure was developed to explain the observed results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA