Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
bioRxiv ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39345471

RESUMEN

Immune responses in tissues display intricate patterns of gene expression that vary across space and time. While such patterns have been increasingly linked to disease outcomes, the mechanisms that generate them and the logic behind them remain poorly understood. As a tractable model of spatial immune responses, we investigated heterogeneous expression of antimicrobial peptides in the larval fly fat body, an organ functionally analogous to the liver. To capture the dynamics of immune response across the full tissue at single-cell resolution, we established live light sheet fluorescence microscopy of whole larvae. We discovered that expression of antimicrobial peptides occurs in a reproducible spatial pattern, with enhanced expression in the anterior and posterior lobes of the fat body. This pattern correlates with microbial localization via blood flow but is not caused by it: loss of heartbeat suppresses microbial transport but leaves the expression pattern unchanged. This result suggests that regions of the tissue most likely to encounter microbes via blood flow are primed to produce antimicrobials. Spatial transcriptomics revealed that these immune microenvironments are defined by genes spanning multiple biological processes, including lipid-binding proteins that regulate host cell death by the immune system. In sum, the larval fly fat body exhibits spatial compartmentalization of immune activity that resembles the strategic positioning of immune cells in mammals, such as in the liver, gut, and lymph nodes. This finding suggests that tissues may share a conserved spatial organization that optimizes immune responses for antimicrobial efficacy while preventing excessive self-damage.

2.
Mol Cell ; 84(15): 2856-2869.e9, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121843

RESUMEN

RNA polymerase II (RNA Pol II)-mediated transcription is a critical, highly regulated process aided by protein complexes at distinct steps. Here, to investigate RNA Pol II and transcription-factor-binding and dissociation dynamics, we generated endogenous photoactivatable-GFP (PA-GFP) and HaloTag knockins using CRISPR-Cas9, allowing us to track a population of molecules at the induced Hsp70 loci in Drosophila melanogaster polytene chromosomes. We found that early in the heat-shock response, little RNA Pol II and DRB sensitivity-inducing factor (DSIF) are reused for iterative rounds of transcription. Surprisingly, although PAF1 and Spt6 are found throughout the gene body by chromatin immunoprecipitation (ChIP) assays, they show markedly different binding behaviors. Additionally, we found that PAF1 and Spt6 are only recruited after positive transcription elongation factor (P-TEFb)-mediated phosphorylation and RNA Pol II promoter-proximal pause escape. Finally, we observed that PAF1 may be expendable for transcription of highly expressed genes where nucleosome density is low. Thus, our live-cell imaging data provide key constraints to mechanistic models of transcription regulation.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , ARN Polimerasa II , Transcripción Genética , Factores de Elongación Transcripcional , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Regiones Promotoras Genéticas , Sistemas CRISPR-Cas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cromosomas Politénicos/genética , Cromosomas Politénicos/metabolismo , Regulación de la Expresión Génica , Fosforilación , Unión Proteica , Respuesta al Choque Térmico/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Nucleosomas/metabolismo , Nucleosomas/genética
4.
Mol Cell ; 84(2): 234-243.e4, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38159566

RESUMEN

Transcription coactivators are proteins or protein complexes that mediate transcription factor (TF) function. However, they lack DNA-binding capacity, prompting the question of how they engage target loci. Three non-exclusive hypotheses have been posited: coactivators are recruited by complexing with TFs, by binding histones through epigenetic reader domains, or by partitioning into condensates through their extensive intrinsically disordered regions. Using p300 as a prototypical coactivator, we systematically mutated its annotated domains and show by single-molecule tracking in live U2OS cells that coactivator-chromatin binding depends entirely on combinatorial binding of multiple TF-interaction domains. Furthermore, we demonstrate that acetyltransferase activity opposes p300-chromatin association and that the N-terminal TF-interaction domains regulate that activity. Single TF-interaction domains are insufficient for chromatin binding and regulation of catalytic activity, implying a principle that we speculate could broadly apply to eukaryotic gene regulation: a TF must act in coordination with other TFs to recruit coactivator activity.


Asunto(s)
Factores de Transcripción , Transcripción Genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Cromatina/genética
5.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292840

RESUMEN

Transcription coactivators are proteins or protein complexes that mediate transcription factor (TF) function. However, they lack DNA binding capacity, prompting the question of how they engage target loci. Three non-exclusive hypotheses have been posited: coactivators are recruited by complexing with TFs, by binding histones through epigenetic reader domains, or by partitioning into phase-separated compartments through their extensive intrinsically disordered regions (IDRs). Using p300 as a prototypical coactivator, we systematically mutated its annotated domains and show by single-molecule tracking in live cells that coactivator-chromatin binding depends entirely on combinatorial binding of multiple TF-interaction domains. Furthermore, we demonstrate that acetyltransferase activity negatively impacts p300-chromatin association and that the N-terminal TF-interaction domains regulate that activity. Single TF-interaction domains are insufficient for both chromatin binding and regulation of catalytic activity, implying a principle that could broadly inform eukaryotic gene regulation: a TF must act in coordination with other TFs to recruit coactivator activity.

6.
Biochem Soc Trans ; 51(2): 557-569, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36876879

RESUMEN

How molecules interact governs how they move. Single-molecule tracking (SMT) thus provides a unique window into the dynamic interactions of biomolecules within live cells. Using transcription regulation as a case study, we describe how SMT works, what it can tell us about molecular biology, and how it has changed our perspective on the inner workings of the nucleus. We also describe what SMT cannot yet tell us and how new technical advances seek to overcome its limitations. This ongoing progress will be imperative to address outstanding questions about how dynamic molecular machines function in live cells.


Asunto(s)
Regulación de la Expresión Génica , Imagen Individual de Molécula
7.
Sci Rep ; 12(1): 18506, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323770

RESUMEN

SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. This identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir's apparent potency > 25-fold. We report that HCV NS5A inhibitors act on the SARS-CoV-2 exonuclease proofreader, providing a possible explanation for the synergy observed with nucleoside analog remdesivir. FDA-approved Hepatitis C therapeutics Epclusa® (velpatasvir/sofosbuvir) and Zepatier® (elbasvir/grazoprevir) could be further optimized to achieve potency and pharmacokinetic properties that support clinical evaluation in combination with remdesivir.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hepatitis C , Humanos , SARS-CoV-2 , Antivirales/uso terapéutico , Sofosbuvir/farmacología , Nucleósidos/farmacología , Adenosina Monofosfato , Alanina , Hepacivirus , Hepatitis C/tratamiento farmacológico , Pulmón
8.
Elife ; 112022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35976226

RESUMEN

Single-molecule imaging provides a powerful way to study biochemical processes in live cells, yet it remains challenging to track single molecules while simultaneously detecting their interactions. Here, we describe a novel property of rhodamine dyes, proximity-assisted photoactivation (PAPA), in which one fluorophore (the 'sender') can reactivate a second fluorophore (the 'receiver') from a dark state. PAPA requires proximity between the two fluorophores, yet it operates at a longer average intermolecular distance than Förster resonance energy transfer (FRET). We show that PAPA can be used in live cells both to detect protein-protein interactions and to highlight a subpopulation of labeled protein complexes in which two different labels are in proximity. In proof-of-concept experiments, PAPA detected the expected correlation between androgen receptor self-association and chromatin binding at the single-cell level. These results establish a new way in which a photophysical property of fluorophores can be harnessed to study molecular interactions in single-molecule imaging of live cells.


A human body is made up of trillions of cells, each containing millions of proteins working to keep our bodies going. Since the invention of the microscope four hundred years ago, scientists have made large strides in visualizing cells and even single protein molecules within cells. To do this, proteins of interest are labeled with fluorescent dyes that absorb ­ or are 'excited' by ­ light of one color, and then give off light of a different color. The labeled proteins are excited by a powerful laser, and a sensitive camera detects the light emitted by single molecules of dye. This technique is called single-particle tracking (SPT), and it can reveal how proteins move around inside a cell. Because most proteins work together in teams or complexes, it would be useful to track the movement of proteins while at the same time observing their interactions. Unfortunately, SPT does not typically allow scientists to watch how proteins interact with each other. Graham et al. accidentally discovered how to do precisely this. First, they labeled proteins with two different colored dyes. Then, the dyes were excited using alternating red and green lasers. Repeated excitation destroys the fluorescent dye molecules, and sure enough, red-excited dye molecules went dark over time. Unexpectedly, however, molecules of the dye that had been excited with red light reappeared after exciting the second dye with green light. The fluorescent molecules were not dead, just sleeping. 'Resuscitating' one dye with the other required that they be close together, and therefore this process was called proximity-assisted photoactivation (PAPA for short). PAPA was able to detect interactions between proteins labeled with different dyes in live human cells, and combining PAPA with SPT allowed Graham et al. to distinguish protein molecules labeled with two different dyes from those labeled with a single dye. Finally, Graham et al. labeled molecules of the androgen receptor protein with two different dyes to monitor how they responded to testosterone. Combining PAPA and SPT measurements successfully detected the pairing of androgen receptor molecules, as well as increased binding of these paired androgen receptor molecules to DNA. This new way of observing how proteins interact will be useful for studying where and how fast these interactions happen in living cells. Understanding how teams of proteins work together under normal conditions will also shed light on how they misbehave in diseases.


Asunto(s)
Receptores Androgénicos , Imagen Individual de Molécula , Cromatina , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Rodaminas , Imagen Individual de Molécula/métodos
9.
Mol Cell ; 82(11): 2084-2097.e5, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35483357

RESUMEN

Gene activation by mammalian transcription factors (TFs) requires multivalent interactions of their low-complexity domains (LCDs), but how such interactions regulate transcription remains unclear. It has been proposed that extensive LCD-LCD interactions culminating in liquid-liquid phase separation (LLPS) of TFs is the dominant mechanism underlying transactivation. Here, we investigated how tuning the amount and localization of LCD-LCD interactions in vivo affects transcription of endogenous human genes. Quantitative single-cell and single-molecule imaging reveals that the oncogenic TF EWS::FLI1 requires a narrow optimum of LCD-LCD interactions to activate its target genes associated with GGAA microsatellites. Increasing LCD-LCD interactions toward putative LLPS represses transcription of these genes in patient-derived cells. Likewise, ectopically creating LCD-LCD interactions to sequester EWS::FLI1 into a well-documented LLPS compartment, the nucleolus, inhibits EWS::FLI1-driven transcription and oncogenic transformation. Our findings show how altering the balance of LCD-LCD interactions can influence transcriptional regulation and suggest a potential therapeutic strategy for targeting disease-causing TFs.


Asunto(s)
Sarcoma de Ewing , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Mamíferos/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/genética , Activación Transcripcional/genética
10.
ACS Infect Dis ; 7(8): 2337-2351, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34129317

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has emerged as a major global health threat. The COVID-19 pandemic has resulted in over 168 million cases and 3.4 million deaths to date, while the number of cases continues to rise. With limited therapeutic options, the identification of safe and effective therapeutics is urgently needed. The repurposing of known clinical compounds holds the potential for rapid identification of drugs effective against SARS-CoV-2. Here, we utilized a library of FDA-approved and well-studied preclinical and clinical compounds to screen for antivirals against SARS-CoV-2 in human pulmonary epithelial cells. We identified 13 compounds that exhibit potent antiviral activity across multiple orthogonal assays. Hits include known antivirals, compounds with anti-inflammatory activity, and compounds targeting host pathways such as kinases and proteases critical for SARS-CoV-2 replication. We identified seven compounds not previously reported to have activity against SARS-CoV-2, including B02, a human RAD51 inhibitor. We further demonstrated that B02 exhibits synergy with remdesivir, the only antiviral approved by the FDA to treat COVID-19, highlighting the potential for combination therapy. Taken together, our comparative compound screening strategy highlights the potential of drug repurposing screens to identify novel starting points for development of effective antiviral mono- or combination therapies to treat COVID-19.


Asunto(s)
Antivirales , COVID-19 , Antivirales/farmacología , Humanos , Pandemias , SARS-CoV-2
11.
Curr Protoc ; 1(4): e130, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33905620

RESUMEN

The most common method for RNA detection involves reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis. Commercial one-step master mixes-which include both a reverse transcriptase and a thermostable polymerase and thus allow performing both the RT and qPCR steps consecutively in a sealed well-are key reagents for SARS-CoV-2 diagnostic testing; yet, these are typically expensive and have been affected by supply shortages in periods of high demand. As an alternative, we describe here how to express and purify Taq polymerase and M-MLV reverse transcriptase and assemble a homemade one-step RT-qPCR master mix. This mix can be easily assembled from scratch in any laboratory equipped for protein purification. We also describe two simple alternative methods to prepare clinical swab samples for SARS-CoV-2 RNA detection by RT-qPCR: heat-inactivation for direct addition, and concentration of RNA by isopropanol precipitation. Finally, we describe how to perform RT-qPCR using the homemade master mix, how to prepare in vitro-transcribed RNA standards, and how to use a fluorescence imager for endpoint detection of RT-PCR amplification in the absence of a qPCR machine In addition to being useful for diagnostics, these versatile protocols may be adapted for nucleic acid quantification in basic research. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of a one-step RT-qPCR master mix using homemade enzymes Basic Protocol 2: Preparation of swab samples for direct RT-PCR Alternate Protocol 1: Concentration of RNA from swab samples by isopropanol precipitation Basic Protocol 3: One-step RT-qPCR of RNA samples using a real-time thermocycler Support Protocol: Preparation of RNA concentration standards by in vitro transcription Alternate Protocol 2: One-step RT-PCR using endpoint fluorescence detection.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , ARN Viral/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/economía , Precipitación Química , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Factores de Tiempo
12.
PLoS One ; 16(2): e0246647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33534838

RESUMEN

Re-opening of communities in the midst of the ongoing COVID-19 pandemic has ignited new waves of infections in many places around the world. Mitigating the risk of reopening will require widespread SARS-CoV-2 testing, which would be greatly facilitated by simple, rapid, and inexpensive testing methods. This study evaluates several protocols for RNA extraction and RT-qPCR that are simpler and less expensive than prevailing methods. First, isopropanol precipitation is shown to provide an effective means of RNA extraction from nasopharyngeal (NP) swab samples. Second, direct addition of NP swab samples to RT-qPCRs is evaluated without an RNA extraction step. A simple, inexpensive swab collection solution suitable for direct addition is validated using contrived swab samples. Third, an open-source master mix for RT-qPCR is described that permits detection of viral RNA in NP swab samples with a limit of detection of approximately 50 RNA copies per reaction. Quantification cycle (Cq) values for purified RNA from 30 known positive clinical samples showed a strong correlation (r2 = 0.98) between this homemade master mix and commercial TaqPath master mix. Lastly, end-point fluorescence imaging is found to provide an accurate diagnostic readout without requiring a qPCR thermocycler. Adoption of these simple, open-source methods has the potential to reduce the time and expense of COVID-19 testing.


Asunto(s)
COVID-19/diagnóstico , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Precipitación Química , Proteínas de la Nucleocápside de Coronavirus/genética , Humanos , Límite de Detección , Nasofaringe/virología , Fosfoproteínas/genética , ARN Viral/aislamiento & purificación , ARN Viral/metabolismo , SARS-CoV-2/aislamiento & purificación
13.
Mol Cell ; 81(6): 1309-1318.e6, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33484638

RESUMEN

DNA damage impedes replication fork progression and threatens genome stability. Upon encounter with most DNA adducts, the replicative CMG helicase (CDC45-MCM2-7-GINS) stalls or uncouples from the point of synthesis, yet eventually resumes replication. However, little is known about the effect on replication of single-strand breaks or "nicks," which are abundant in mammalian cells. Using Xenopus egg extracts, we reveal that CMG collision with a nick in the leading strand template generates a blunt-ended double-strand break (DSB). Moreover, CMG, which encircles the leading strand template, "runs off" the end of the DSB. In contrast, CMG collision with a lagging strand nick generates a broken end with a single-stranded overhang. In this setting, CMG translocates along double-stranded DNA beyond the break and is then ubiquitylated and removed from chromatin by the same pathway used during replication termination. Our results show that nicks are uniquely dangerous DNA lesions that invariably cause replisome disassembly, and they suggest that CMG cannot be stored on dsDNA while cells resolve replication stress.


Asunto(s)
Cromatina , Roturas del ADN de Cadena Simple , ADN Helicasas , Replicación del ADN , Ubiquitinación , Proteínas de Xenopus , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Células Sf9 , Spodoptera , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
14.
Cell ; 178(1): 60-75.e19, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31230716

RESUMEN

Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.


Asunto(s)
Aprendizaje por Asociación/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Cuerpos Pedunculados/fisiología , Receptores de Dopamina D1/metabolismo , Receptores Dopaminérgicos/metabolismo , Animales , Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Plasticidad Neuronal , Odorantes , Recompensa , Olfato/fisiología , Potenciales Sinápticos/fisiología , Factores de Tiempo
15.
Nat Struct Mol Biol ; 25(9): 877-884, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30177755

RESUMEN

Nonhomologous end joining (NHEJ) is the primary pathway of DNA double-strand-break repair in vertebrate cells, yet how NHEJ factors assemble a synaptic complex that bridges DNA ends remains unclear. To address the role of XRCC4-like factor (XLF) in synaptic-complex assembly, we used single-molecule fluorescence imaging in Xenopus laevis egg extract, a system that efficiently joins DNA ends. We found that a single XLF dimer binds DNA substrates just before the formation of a ligation-competent synaptic complex between DNA ends. The interaction of both globular head domains of the XLF dimer with XRCC4 is required for efficient formation of this synaptic complex. Our results indicate that, in contrast to a model in which filaments of XLF and XRCC4 bridge DNA ends, binding of a single XLF dimer facilitates the assembly of a stoichiometrically well-defined synaptic complex.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Animales , Proteínas de Unión al ADN/metabolismo , Dimerización , Humanos , Imagen Óptica , Xenopus laevis
16.
Methods Enzymol ; 591: 233-270, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28645371

RESUMEN

Non-homologous end joining (NHEJ) repairs the majority of DNA double-strand breaks in human cells, yet the detailed order of events in this process has remained obscure. Here, we describe how to employ Xenopus laevis egg extract for the study of NHEJ. The egg extract is easy to prepare in large quantities, and it performs efficient end joining that requires the core end joining proteins Ku, DNA-PKcs, XLF, XRCC4, and DNA ligase IV. These factors, along with the rest of the soluble proteome, are present at endogenous concentrations, allowing mechanistic analysis in a system that begins to approximate the complexity of cellular end joining. We describe an ensemble assay that monitors covalent joining of DNA ends and fluorescence assays that detect joining of single pairs of DNA ends. The latter assay discerns at least two discrete intermediates in the bridging of DNA ends.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Óvulo/metabolismo , Animales , Roturas del ADN de Doble Cadena , Xenopus laevis
17.
Nucleic Acids Res ; 45(12): 7106-7117, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28407103

RESUMEN

Most bacteria utilize the highly conserved parABS partitioning system in plasmid and chromosome segregation. This system depends on a DNA-binding protein ParB, which binds specifically to the centromere DNA sequence parS and to adjacent non-specific DNA over multiple kilobases in a phenomenon called spreading. Previous single-molecule experiments in combination with genetic, biochemical and computational studies have argued that ParB spreading requires cooperative interactions between ParB dimers including DNA bridging and possible nearest-neighbor interactions. A recent structure of a ParB homolog co-crystallized with parS revealed that ParB dimers tetramerize to form a higher order nucleoprotein complex. Using this structure as a guide, we systematically ablated a series of proposed intermolecular interactions in the Bacillus subtilis ParB (BsSpo0J) and characterized their effect on spreading using both in vivo and in vitro assays. In particular, we measured DNA compaction mediated by BsSpo0J using a recently developed single-molecule method to simultaneously visualize protein binding on single DNA molecules and changes in DNA conformation without protein labeling. Our results indicate that residues acting as hubs for multiple interactions frequently led to the most severe spreading defects when mutated, and that a network of both cis and trans interactions between ParB dimers is necessary for spreading.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/química , Cromosomas Bacterianos/química , ADN Bacteriano/química , Plásmidos/química , Secuencias de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Centrómero/química , Centrómero/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/metabolismo , Clonación Molecular , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Modelos Moleculares , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
18.
Nat Commun ; 7: 10976, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26952553

RESUMEN

Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein-DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein-DNA interactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bioquímica/métodos , ADN Bacteriano/química , Proteínas de Unión al ADN/metabolismo , Microscopía Fluorescente/métodos , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Fluorescencia , Cinética , Conformación de Ácido Nucleico , Unión Proteica
19.
Mol Cell ; 61(6): 850-8, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990988

RESUMEN

Repair of DNA double-strand breaks (DSBs) is essential for genomic stability. The most common DSB repair mechanism in human cells, non-homologous end joining (NHEJ), rejoins broken DNA ends by direct ligation. It remains unclear how components of the NHEJ machinery assemble a synaptic complex that bridges DNA ends. Here, we use single-molecule imaging in a vertebrate cell-free extract to show that synapsis of DNA ends occurs in at least two stages that are controlled by different NHEJ factors. DNA ends are initially tethered in a long-range complex whose formation requires the Ku70/80 heterodimer and the DNA-dependent protein kinase catalytic subunit. The ends are then closely aligned, which requires XLF, a non-catalytic function of XRCC4-LIG4, and DNA-PK activity. These results reveal a structural transition in the synaptic complex that governs alignment of DNA ends. Our approach provides a means of studying physiological DNA DSB repair at single-molecule resolution.


Asunto(s)
Emparejamiento Cromosómico/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Sistema Libre de Células , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Autoantígeno Ku , Imagen Molecular , Unión Proteica
20.
EMBO J ; 34(14): 1971-85, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26071591

RESUMEN

DNA interstrand cross-links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL ("approach"), a nucleotide is inserted across from the unhooked lesion ("insertion"), and the leading strand is extended beyond the lesion ("extension"). How DNA polymerases bypass the ICL is incompletely understood. Here, we use repair of a site-specific ICL in Xenopus egg extracts to study the mechanism of lesion bypass. Deep sequencing of ICL repair products showed that the approach and extension steps are largely error-free. However, a short mutagenic tract is introduced in the vicinity of the lesion, with a maximum mutation frequency of ~1%. Our data further suggest that approach is performed by a replicative polymerase, while extension involves a complex of Rev1 and DNA polymerase ζ. Rev1-pol ζ recruitment requires the Fanconi anemia core complex but not FancI-FancD2. Our results begin to illuminate how lesion bypass is integrated with chromosomal DNA replication to limit ICL repair-associated mutagenesis.


Asunto(s)
Nucleotidiltransferasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Inmunoprecipitación de Cromatina , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Femenino , Complejos Multiproteicos , Mutagénesis , Nucleotidiltransferasas/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitinación , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA