Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biomolecules ; 14(9)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39334831

RESUMEN

Desbuquois dysplasia type 1 (DBQD1) is a recessive chondrodysplasia caused by mutations in the CANT1 gene, encoding for the Golgi Calcium-Activated Nucleotidase 1 (CANT1). The enzyme hydrolyzes UDP, the by-product of glycosyltransferase reactions, but it might play other roles in different cell types. Using a Cant1 knock-out mouse, we demonstrated that CANT1 is crucial for glycosaminoglycan (GAG) synthesis; however, its impact on the biochemical properties of cartilage proteoglycans remains unknown. Thus, in this work, we characterized decorin and aggrecan from primary chondrocyte cultures and cartilage biopsies of mutant mice at post-natal day 4 by Western blots and further investigated their distribution in the cartilage extracellular matrix (ECM) by immunohistochemistry. We demonstrated that the GAG synthesis defect caused by CANT1 impairment led to the synthesis and secretion of proteoglycans with shorter GAG chains compared with wild-type animals. However, this alteration did not result in the synthesis and secretion of decorin and aggrecan in the unglycanated form. Interestingly, the defect was not cartilage-specific since also skin decorin showed a reduced hydrodynamic size. Finally, immunohistochemical studies in epiphyseal sections of mutant mice demonstrated that the proteoglycan structural defect moderately affected decorin distribution in the ECM.


Asunto(s)
Agrecanos , Decorina , Modelos Animales de Enfermedad , Animales , Decorina/metabolismo , Decorina/genética , Agrecanos/metabolismo , Agrecanos/genética , Ratones , Ratones Noqueados , Cartílago/metabolismo , Cartílago/patología , Condrocitos/metabolismo , Nucleotidasas/metabolismo , Nucleotidasas/genética , Proteoglicanos/metabolismo , Proteoglicanos/genética , Polidactilia/metabolismo , Polidactilia/genética , Polidactilia/patología , Glicosaminoglicanos/metabolismo , Enanismo/metabolismo , Enanismo/genética , Enanismo/patología , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Matriz Extracelular/metabolismo , Inestabilidad de la Articulación/metabolismo , Inestabilidad de la Articulación/patología , Inestabilidad de la Articulación/genética , Células Cultivadas , Osificación Heterotópica
2.
Bone ; 175: 116838, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454964

RESUMEN

Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by pathogenic variants in the SLC26A2 gene encoding for a cell membrane sulfate/chloride antiporter crucial for sulfate uptake and glycosaminoglycan (GAG) sulfation. Research on a DTD animal model has suggested possible pharmacological treatment approaches. In view of future clinical trials, the identification of non-invasive biomarkers is crucial to assess the efficacy of treatments. Urinary GAG composition has been analyzed in several metabolic disorders including mucopolysaccharidoses. Moreover, the N-terminal fragment of collagen X, known as collagen X marker (CXM), is considered a real-time marker of endochondral ossification and growth velocity and was studied in individuals with achondroplasia and osteogenesis imperfecta. In this work, urinary GAG sulfation and blood CXM levels were investigated as potential biomarkers for individuals affected by DTD. Chondroitin sulfate disaccharide analysis was performed on GAGs isolated from urine by HPLC after GAG digestion with chondroitinase ABC and ACII, while CXM was assessed in dried blood spots. Results from DTD patients were compared with an age-matched control population. Undersulfation of urinary GAGs was observed in DTD patients with some relationship to the clinical severity and underlying SLC26A2 variants. Lower than normal CXM levels were observed in most patients, even if the marker did not show a clear pattern in our small patient cohort because CXM values are highly dependent on age, gender and growth velocity. In summary, both non-invasive biomarkers are promising assays targeting various aspects of the disorder including overall metabolism of sulfated GAGs and endochondral ossification.


Asunto(s)
Acondroplasia , Proteínas de Transporte de Anión , Animales , Proteínas de Transporte de Anión/genética , Transportadores de Sulfato , Glicosaminoglicanos , Biomarcadores , Colágeno/metabolismo , Sulfatos/metabolismo
3.
Methods Mol Biol ; 2619: 141-151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662468

RESUMEN

Several experimental protocols are available to study the synthesis and secretion of proteoglycans in health and diseases, but there are few methods to analyse the intracellular processing of these macromolecules. We report a western blot analysis on medium and cell layer of primary chondrocyte culture to determine the glycanation status of aggrecan. Using a specific antibody against the aggrecan core protein and digesting an aliquot of sample with chondroitinase ABC, it is possible to analyse the whole aggrecan macromolecule and the core protein in order to evaluate defects in aggrecan glycanation.


Asunto(s)
Proteínas de la Matriz Extracelular , Proteoglicanos , Agrecanos , Proteoglicanos/metabolismo , Técnicas de Cultivo de Célula , Western Blotting , Lectinas Tipo C
4.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502207

RESUMEN

The complexity of skeletal pathologies makes use of in vivo models essential to elucidate the pathogenesis of the diseases; nevertheless, chondrocyte and osteoblast cell lines provide relevant information on the underlying disease mechanisms. Due to the limitations of primary chondrocytes, immortalized cells represent a unique tool to overcome this problem since they grow very easily for several passages. However, in the immortalization procedure the cells might lose the original phenotype; thus, these cell lines should be deeply characterized before their use. We immortalized primary chondrocytes from a Cant1 knock-out mouse, an animal model of Desbuquois dysplasia type 1, with a plasmid expressing the SV40 large and small T antigen. This cell line, based on morphological and biochemical parameters, showed preservation of the chondrocyte phenotype. In addition reduced proteoglycan synthesis and oversulfation of glycosaminoglycan chains were demonstrated, as already observed in primary chondrocytes from the Cant1 knock-out mouse. In conclusion, immortalized Cant1 knock-out chondrocytes maintained the disease phenotype observed in primary cells validating the in vitro model and providing an additional tool to further study the proteoglycan biosynthesis defect. The same approach might be extended to other cartilage disorders.


Asunto(s)
Ácido Anhídrido Hidrolasas/fisiología , Condrocitos/patología , Anomalías Craneofaciales/patología , Enanismo/patología , Glicosaminoglicanos/metabolismo , Inestabilidad de la Articulación/patología , Osificación Heterotópica/patología , Fenotipo , Polidactilia/patología , Animales , Línea Celular Transformada , Condrocitos/metabolismo , Anomalías Craneofaciales/etiología , Anomalías Craneofaciales/metabolismo , Enanismo/etiología , Enanismo/metabolismo , Inestabilidad de la Articulación/etiología , Inestabilidad de la Articulación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osificación Heterotópica/etiología , Osificación Heterotópica/metabolismo , Polidactilia/etiología , Polidactilia/metabolismo
5.
Biochem Pharmacol ; 185: 114452, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33545117

RESUMEN

Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in the SLC26A2 gene encoding for a sulfate/chloride transporter. When SLC26A2 is impaired intracellular level of sulfate is reduced leading to the synthesis of undersulfated proteoglycans. In normal chondrocytes, the main source of intracellular sulfate is the extracellular uptake through SLC26A2, but a small amount comes from the catabolism of sulfur-containing amino acids and other thiols. Here N-acetylcysteine (NAC), an extensively used drug, is proposed as alternative source of intracellular sulfate in an animal model of DTD (dtd mouse). Mutant and wild type mice were treated twice a day with hypodermic injections of 250 mg NAC/kg body weight for one week after birth. At the end of the treatment, an improvement trend in cartilage proteoglycan sulfation and in the skeletal phenotype of treated dtd mice were observed. Thus, a longer treatment lasted three weeks starting from birth was performed. Treated mutant mice showed a significant increase of cartilage proteoglycan sulfation and a relevant improvement of the skeletal phenotype based on measurements of several bony elements and bone quality by DEXA and micro CT. Moreover, the amelioration of the overall growth plate morphology in treated dtd mice suggested a partial rescue of the endochondral ossification process. Overall, the results prove that NAC is an effective source of intracellular sulfate for dtd mice in the postnatal period. This finding paves the way for a potential pharmacological treatment of DTD patients taking advantage from a drug repositioning strategy.


Asunto(s)
Acetilcisteína/administración & dosificación , Densidad Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Enanismo/tratamiento farmacológico , Enanismo/metabolismo , Fenotipo , Acetilcisteína/farmacocinética , Animales , Animales Recién Nacidos , Densidad Ósea/fisiología , Enanismo/diagnóstico por imagen , Depuradores de Radicales Libres/administración & dosificación , Depuradores de Radicales Libres/farmacocinética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos
6.
Int J Mol Sci ; 21(8)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295296

RESUMEN

Proteoglycans (PGs) are macromolecules present on the cell surface and in the extracellular matrix that confer specific mechanical, biochemical, and physical properties to tissues. Sulfate groups present on glycosaminoglycans, linear polysaccharide chains attached to PG core proteins, are fundamental for correct PG functions. Indeed, through the negative charge of sulfate groups, PGs interact with extracellular matrix molecules and bind growth factors regulating tissue structure and cell behavior. The maintenance of correct sulfate metabolism is important in tissue development and function, particularly in cartilage where PGs are fundamental and abundant components of the extracellular matrix. In chondrocytes, the main sulfate source is the extracellular space, then sulfate is taken up and activated in the cytosol to the universal sulfate donor to be used in sulfotransferase reactions. Alteration in each step of sulfate metabolism can affect macromolecular sulfation, leading to the onset of diseases that affect mainly cartilage and bone. This review presents a panoramic view of skeletal dysplasias caused by mutations in genes encoding for transporters or enzymes involved in macromolecular sulfation. Future research in this field will contribute to the understanding of the disease pathogenesis, allowing the development of targeted therapies aimed at alleviating, preventing, or modifying the disease progression.


Asunto(s)
Enfermedades del Desarrollo Óseo/etiología , Enfermedades del Desarrollo Óseo/metabolismo , Susceptibilidad a Enfermedades , Procesamiento Proteico-Postraduccional , Sulfatos/metabolismo , Animales , Cartílago/metabolismo , Metabolismo Energético/genética , Matriz Extracelular , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Glicosaminoglicanos/metabolismo , Humanos , Redes y Vías Metabólicas , Fenotipo , Proteoglicanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA