Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Front Microbiol ; 15: 1362252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476939

RESUMEN

Introduction: Leishmaniasis comprises a complex group of diseases caused by protozoan parasites from the Leishmania genus, presenting a significant threat to human health. Infection starts by the release into the skin of metacyclic promastigote (MP) form of the parasite by an infected sand fly. Soon after their release, the MPs enter a phagocytic host cell. This study focuses on finding peptides that can inhibit MP-phagocytic host cell interaction. Methods: We used a phage display library to screen for peptides that bind to the surface of L. amazonensis (causative agent for cutaneous leishmaniasis) and L. infantum (causative agent for cutaneous and visceral leishmaniasis) MPs. Candidate peptide binding to the MP surface and inhibition of parasite-host cell interaction were tested in vitro. Peptide Inhibition of visceral leishmaniasis development was assessed in BALB/c mice. Results: The selected L. amazonensis binding peptide (La1) and the L. infantum binding peptide (Li1) inhibited 44% of parasite internalization into THP-1 macrophage-like cells in vitro. While inhibition of internalization by La1 was specific to L. amazonensis, Li1 was effective in inhibiting internalization of both parasite species. Importantly, Li1 inhibited L. infantum spleen and liver infection of BALB/c mice by 84%. Conclusion: We identified one peptide that specifically inhibits L. amazonensis MP infection of host cells and another that inhibits both, L. amazonensis and L. infantum, MP infection. Our findings suggest a promising path for the development of new treatments and prevention of leishmaniasis.

2.
Chem Biodivers ; 20(12): e202300429, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37908056

RESUMEN

Phaeurus antarcticus is a member of the Desmarestiaceae family endemic to the Antarctic Peninsula. Reports addressing its chemical composition and biological activities are scarce. Herein, bioactive non-polar compounds of P. antarcticus against pathogenic bacteria, Leishmania amazonensis and Neospora caninum parasites were targeted through GC-MS Molecular Networking and multivariate analysis (OPLS-DA). The effects on horseradish peroxidase (HRP) were also evaluated. P. antarcticus exhibited selective bacteriostatic and bactericidal activities against Staphylococcus aureus with MIC and MBC values from 6.25-100 µg mL-1 . Fractions HX-FC and HX-FD were the most active against L. amazonensis with EC50 ranging from 18.5-62.3 µg mL-1 . Additionally, fractions HX-FC and HX-FD showed potent inhibition of N. caninum at EC50 values of 2.8 and 6.3 µg mL-1 , respectively. All fractions inhibited HRP activity, indicating possible interactions with Heme proteins. It was possible to annotate compounds from tree mains clusters, containing terpenoids, steroids, fatty acids, and alcohols by correlating the spectral data of the GC-MS analysis with Molecular Networking and the OPLS-DA results.


Asunto(s)
Antiinfecciosos , Algas Marinas , Extractos Vegetales/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Regiones Antárticas , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
3.
ACS Omega ; 8(37): 34008-34016, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744786

RESUMEN

Leishmaniasis refers to a collection of diseases caused by protozoa from the Leishmania genus. These diseases, along with other parasitic afflictions, pose a significant public health issue, particularly given the escalating number of at-risk patients. This group includes immunocompromised individuals and those residing in impoverished conditions. The treatment of leishmaniasis is crucial, particularly in light of the mortality rate associated with nontreatment, which stands at 20-30,000 deaths per year globally. However, the therapeutic options currently available are limited, often ineffective, and potentially toxic. Consequently, the pursuit of new therapeutic alternatives is warranted. This study aims to design, synthesize, and evaluate the leishmanicidal activity of antimicrobial peptides functionalized with guanidine compounds and identify those with enhanced potency and selectivity against the parasite. Accordingly, three bioconjugates were obtained by using the solid-phase peptide synthesis protocol. Each proved to be more potent against intracellular amastigotes than their respective peptide or guanidine compounds alone and demonstrated higher selectivity to the parasites than to the host cells. Thus, the conjugation strategy employed with these compounds effectively contributes to the development of new molecules with leishmanicidal activity.

4.
Photodiagnosis Photodyn Ther ; 42: 103641, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37268042

RESUMEN

Leishmaniasis is a neglected disease that impacts more than one billion people in endemic areas of the globe. Several drawbacks are associated with the currently existing drugs for treatment such as low effectiveness, toxicity, and the emergence of resistant strains that demonstrate the importance of looking for novel therapeutic alternatives. Photodynamic therapy (PDT) is a promising novel alternative for cutaneous leishmaniasis treatment because its topical application avoids potential side effects generally associated with oral/parenteral application. A light-sensitive compound known as photosensitizer (PS) interacts with light and molecular oxygen to generate reactive oxygen species (ROS), which promote cell death by oxidative stress through PDT approaches. Here, for the first time, we demonstrate the antileishmanial effect of tetra-cationic porphyrins with peripheral Pt(II)- and Pd(II)-polypyridyl complexes using PDT. The isomeric tetra-cationic porphyrins in the meta positions, 3-PtTPyP, and 3-PdTPyP, exhibited the highest antiparasitic activity against promastigote (IC50-pro = 41.8 nM and 46.1 nM, respectively) and intracellular amastigote forms (IC50-ama = 27.6 nM and 38.8 nM, respectively) of L. amazonensis under white light irradiation (72 J cm-2) with high selectivity (SI > 50) for both forms of parasites regarding mammalian cells. In addition, these PS induced the cell death of parasites principally by a necrotic process in the presence of white light by mitochondrial and acidic compartments accumulation. This study showed that porphyrins 3-PtTPyP and 3-PdTPyP displayed a promising antileishmanial-PDT activity with potential application for cutaneous leishmaniasis treatment.


Asunto(s)
Antiprotozoarios , Leishmaniasis Cutánea , Fotoquimioterapia , Porfirinas , Humanos , Animales , Porfirinas/farmacología , Porfirinas/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Antiprotozoarios/uso terapéutico , Leishmaniasis Cutánea/tratamiento farmacológico , Mamíferos
5.
Biomolecules ; 12(12)2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36551331

RESUMEN

Leishmaniasis is a highly prevalent, yet neglected disease caused by protozoan parasites of the genus Leishmania. In the search for newer, safer, and more effective antileishmanial compounds, we herein present a study of the mode of action in addition to a detailed structural and biological characterization of LQOF-G6 [N-benzoyl-N'-benzyl-N″-(4-tertbutylphenyl)guanidine]. X-ray crystallography and extensive NMR experiments revealed that LQOF-G6 nearly exclusively adopts the Z conformation stabilized by an intramolecular hydrogen bond. The investigated guanidine showed selective inhibitory activity on Leishmania major cysteine protease LmCPB2.8ΔCTE (CPB) with ~73% inhibition and an IC50-CPB of 6.0 µM. This compound did not show any activity against the mammalian homologues cathepsin L and B. LQOF-G6 has been found to be nontoxic toward both organs and several cell lines, and no signs of hepatotoxicity or nephrotoxicity were observed from the analysis of biochemical clinical plasma markers in the treated mice. Docking simulations and experimental NMR measurements showed a clear contribution of the conformational parameters to the strength of the binding in the active site of the enzyme, and thus fit the differences in the inhibition values of LQOF-G6 compared to the other guanidines. Furthermore, the resulting data render LQOF-G6 suitable for further development as an antileishmanial drug.


Asunto(s)
Proteasas de Cisteína , Leishmania major , Leishmaniasis , Animales , Ratones , Proteasas de Cisteína/metabolismo , Guanidina , Virulencia , Leishmaniasis/tratamiento farmacológico , Mamíferos/metabolismo
6.
J Phycol ; 58(3): 406-423, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35090189

RESUMEN

Gracilariales is a clade of florideophycean red macroalgae known for being the main source of agar. We present a de novo genome assembly and annotation of Gracilaria domingensis, an agarophyte alga with flattened thallus widely distributed along Central and South American Atlantic intertidal zones. In addition to structural analysis, an organizational comparison was done with other Rhodophyta genomes. The nuclear genome has 78 Mbp, with 11,437 predicted coding genes, 4,075 of which did not have hits in sequence databases. We also predicted 1,567 noncoding RNAs, distributed in 14 classes. The plastid and mitochondrion genome structures were also obtained. Genes related to agar synthesis were identified. Genes for type II galactose sulfurylases could not be found. Genes related to ascorbate synthesis were found. These results suggest an intricate connection of cell wall polysaccharide synthesis and the redox systems through the use of L-galactose in Rhodophyta. The genome of G. domingensis should be valuable to phycological and aquacultural research, as it is the first tropical and Western Atlantic red macroalgal genome to be sequenced.


Asunto(s)
Genoma Mitocondrial , Gracilaria , Rhodophyta , Agar/metabolismo , Galactosa/metabolismo , Gracilaria/genética , Rhodophyta/genética , Rhodophyta/metabolismo
7.
Antimicrob Agents Chemother ; 66(1): e0076721, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34633848

RESUMEN

The current treatment of leishmaniasis is based on a few drugs that present several drawbacks, such as high toxicity, difficult administration route, and low efficacy. These disadvantages raise the necessity to develop novel antileishmanial compounds allied with a comprehensive understanding of their mechanisms of action. Here, we elucidate the probable mechanism of action of the antileishmanial binuclear cyclopalladated complex [Pd(dmba)(µ-N3)]2 (CP2) in Leishmania amazonensis. CP2 causes oxidative stress in the parasite, resulting in disruption of mitochondrial Ca2+ homeostasis, cell cycle arrest at the S-phase, increasing the reactive oxygen species (ROS) production and overexpression of stress-related and cell detoxification proteins, and collapsing the Leishmania mitochondrial membrane potential, and promotes apoptotic-like features in promastigotes, leading to necrosis, or directs programmed cell death (PCD)-committed cells toward necrotic-like destruction. Moreover, CP2 reduces the parasite load in both liver and spleen in Leishmania infantum-infected hamsters when treated for 15 days with 1.5 mg/kg body weight/day CP2, expanding its potential application in addition to the already known effectiveness on cutaneous leishmaniasis for the treatment of visceral leishmaniasis, showing the broad spectrum of action of this cyclopalladated complex. The data presented here bring new insights into the CP2 molecular mechanisms of action, assisting the promotion of its rational modification to improve both safety and efficacy.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmaniasis Cutánea , Animales , Antiprotozoarios/uso terapéutico , Calcio/metabolismo , Muerte Celular , Leishmaniasis Cutánea/tratamiento farmacológico , Macrófagos , Ratones , Ratones Endogámicos BALB C , Mitocondrias
8.
Nat Prod Res ; 36(6): 1599-1603, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33586545

RESUMEN

Natural products have been largely explored as treatments for leishmaniasis, neglected diseases with few toxic therapeutic options, as scaffolds for the development of new drugs. Herein, derivatives from the aerial parts of Baccharis trimera (Less.) DC (extract and its fractions) were evaluated against Leishmania amazonensis and macrophage cells. The ethyl acetate extract was fractionated by solid-phase extraction, resulting in eight fractions (F1-F8). Fractions F3-4 were further separated into 149 subfractions; subfraction 148 (IC50-PRO = 1.56 ± 0.1 µg mL-1) was selected for purification and constituent(s) characterization by high-performance liquid chromatography, as well as 1H and 13C nuclear magnetic resonance spectroscopy. The flavonoid eupatorin (3',5-dihydroxy-4',6,7-trimethoxyflavone) was identified. This compound was 3.7 times more effective against intracellular amastigotes (IC50-AMA = 1.6 ± 0.1 µM) than amphotericin B and presented low cytotoxicity (CC50 > 100 µM), being almost 62 times more selective for the parasite, showing great potential in drug development for cutaneous leishmaniasis treatment.


Asunto(s)
Antiprotozoarios , Baccharis , Leishmania mexicana , Leishmaniasis Cutánea , Antiprotozoarios/farmacología , Baccharis/química , Flavonoides/análisis , Leishmaniasis Cutánea/tratamiento farmacológico , Extractos Vegetales/química , Hojas de la Planta/química
9.
PLoS One ; 16(11): e0259008, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34723989

RESUMEN

Leishmaniasis is a neglected disease that affects 12 million people living mainly in developing countries. Herein, 24 new N-oxide-containing compounds were synthesized followed by in vitro and in vivo evaluation of their antileishmanial activity. Compound 4f, a furoxan derivative, was particularly remarkable in this regard, with EC50 value of 3.6 µM against L. infantum amastigote forms and CC50 value superior to 500 µM against murine peritoneal macrophages. In vitro studies suggested that 4f may act by a dual effect, by releasing nitric oxide after biotransformation and by inhibiting cysteine protease CPB (IC50: 4.5 µM). In vivo studies using an acute model of infection showed that compound 4f at 7.7 mg/Kg reduced ~90% of parasite burden in the liver and spleen of L. infantum-infected BALB/c mice. Altogether, these outcomes highlight furoxan 4f as a promising compound for further evaluation as an antileishmanial agent.


Asunto(s)
Antiprotozoarios/farmacología , Diseño de Fármacos , Leishmania infantum/efectos de los fármacos , Óxidos/farmacología , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Biomarcadores/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13 , Ligandos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/parasitología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Óxido Nítrico/análisis , Nitritos/análisis , Oxadiazoles/síntesis química , Oxadiazoles/química , Óxidos/síntesis química , Óxidos/química , Carga de Parásitos , Pichia/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Proteínas Protozoarias/metabolismo
10.
Nat Prod Res ; 35(23): 5470-5474, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32567355

RESUMEN

Leishmaniasis is a group of diseases that have limited and high toxic therapeutic options. Herein, we evaluated the antileishmanial potential and cytotoxicity of hexanic extract obtained from the Antarctic brown alga Ascoseira mirabilis using bioguided fractionation against Leishmania amazonensis and murine macrophages, which was fractionated by SPE, yielding seven fractions (F1-F7). The fraction F6 showed good anti-amastigote activity (IC50 = 73.4 ± 0.4 µg mL-1) and low cytotoxicity (CC50 > 100 µg mL-1). Thus, in order to identify the bioactive constituent(s) of F6, the fraction was separated in a semipreparative HPLC, yielding four fractions (F6.1-F6.4). F6.2 was the most bioactive fraction (IC50 = 66.5 ± 4.5 µg mL-1) and GC-MS analyses revealed that the compounds octadecane, propanoic acid, 1-monomyristin and azelaic acid correspond to 61% of its composition. These data show for the first time the antileishmanial potential of the Antarctic alga A. mirabilis.


Asunto(s)
Antiprotozoarios , Leishmania mexicana , Leishmaniasis , Mirabilis , Phaeophyceae , Animales , Antiprotozoarios/farmacología , Leishmaniasis/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/uso terapéutico
11.
Photodiagnosis Photodyn Ther ; 31: 101769, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32437971

RESUMEN

Leishmaniasis is a serious and neglected disease that affects 14 million people around the World. The currently available drugs for treatment present several drawbacks such as low efficacy and severe side effects, contributing to patients' low compliance. Photodynamic therapy (PDT) is rising as a promising treatment of cutaneous leishmaniasis, mainly considering its topical administration that circumvents any potential adverse effects commonly related to oral/parenteral administration. PDT depends on the interaction between a light-sensitive compound (photosensitizer - PS), light and molecular oxygen. The reaction generates reactive oxygen species (ROS) which induce cell death by oxidative stress. The main goal of this study is to demonstrate the antileishmanial effect of three chlorin derivatives (CHL-OH-A, CHL-OH-B, CHL-TRISMA) using PDT, as well as to investigate their cell death pathway on Leishmania amazonensis promastigote forms after chlorin-PDT application. The chlorin derivatives herein studied did not exhibit aggregates in aqueous medium and showed fast accumulation in Leishmania acidic compartments. CHL-OH-A exhibited the highest antiparasitic activity at 24 h (0.33 µmol L-1) and 48 h (0.14 µmol L-1) after irradiation at 660 nm (6.0 Jcm-2). CHL-OH-A, CHL-OH-B and CHL-TRISMA molecules induced the cell death of parasites mainly by an apoptotic-like process in the presence of light. These chlorin derivatives are 80-fold more active against Leishmania when compared to other PSs reported in the literature. In this study, we have shown that these amphiphilic chlorins, and in particular, CHL-OH-A, exert an interesting leishmanicidal activity suggesting that the use of these PSs associated with PDT could be a promising strategy for treatment of cutaneous leishmaniasis.


Asunto(s)
Preparaciones Farmacéuticas , Fotoquimioterapia , Porfirinas , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología
12.
Rev Soc Bras Med Trop ; 53: e20190503, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32267457

RESUMEN

INTRODUCTION: The genus Rhodnius in the subfamily Triatominae comprises 20 species, which can transmit Trypanosoma cruzi and Trypanosoma rangeli. Due to the development of molecular techniques, Triatominae species can now be characterized by mitochondrial and nuclear markers, making it possible to verify and/or correct the existing data on these species. The results achieved in this study provide a more detailed and accurate differentiation of the Rhodnius species, helping the establishment of a more appropriate classification. METHODS: Data collection was performed by DNA analysis, morphological and morphometric studies to distinguish four populations of R. neglectus and four of R. prolixus. Phylogenetic data were compared to morphological and morphometric data. RESULTS: The analysis of Cytb fragments suggests that the four colonies designated to Rhodnius neglectus as well as those of R. prolixus were correctly identified. CONCLUSIONS: The morphological characters observed in the specimens of the colonies originally identified as R. prolixus and R. neglectus, such as the presence or absence of collar in the eggs, the patterns of the median process of the pygophore, and anterolateral angle, are consistent with the species. Geometric morphometrics also show an intraspecific variability in R. prolixus.


Asunto(s)
Insectos Vectores/anatomía & histología , Rhodnius/clasificación , Animales , Enfermedad de Chagas/transmisión , Insectos Vectores/clasificación , Insectos Vectores/genética , Masculino , Filogenia , Rhodnius/anatomía & histología , Rhodnius/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
13.
PLoS One ; 15(3): e0228740, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32214347

RESUMEN

Parasitic diseases are a neglected and serious problem, especially in underdeveloped countries. Among the major parasitic diseases, Leishmaniasis figures as an urgent challenge due to its high incidence and severity. At the same time, the indiscriminate use of antibiotics by the population is increasing together with resistance to medicines. To address this problem, new antibiotic-like molecules that directly kill or inhibit the growth of microorganisms are necessary, where antimicrobial peptides (AMPs) can be of great help. In this work, the ferrocene molecule, one active compound with low levels of in vivo toxicity, was coupled to the N-terminus of the RP1 peptide (derived from the human chemokine CXCL4), aiming to evaluate how this change modifies the structure, biological activity, and toxicity of the peptide. The peptide and the conjugate were synthesized using the solid phase peptide synthesis (SPPS). Circular dichroism assays in PBS showed that the RP1 peptide and its conjugate had a typical spectrum for disordered structures. The Fc-RP1 presented anti-amastigote activity against Leishmania amazonensis (IC50 = 0.25 µmol L-1). In comparison with amphotericin B, a second-line drug approved for leishmaniasis treatment, (IC50 = 0.63 µmol L-1), Fc-RP1 was more active and showed a 2.5-fold higher selectivity index. The RP1 peptide presented a MIC of 4.3 µmol L-1 against S. agalactiae, whilst Fc-RP1 was four times more active (MIC = 0.96 µmol L-1), indicating that ferrocene improved the antimicrobial activity against Gram-positive bacteria. The Fc-RP1 peptide also decreased the minimum inhibitory concentration (MIC) in the assays against E. faecalis (MIC = 7.9 µmol L-1), E. coli (MIC = 3.9 µmol L-1) and S. aureus (MIC = 3.9 µmol L-1). The cytotoxicity of the compounds was tested against HaCaT cells, and no significant activity at the highest concentration tested (500 µg. mL-1) was observed, showing the high potential of this new compound as a possible new drug. The coupling of ferrocene also increased the vesicle permeabilization of the peptide, showing a direct relation between high peptide concentration and high carboxyfluorescein release, which indicates the action mechanism by pore formation on the vesicles. Several studies have shown that ferrocene destabilizes cell membranes through lipid peroxidation, leading to cell lysis. It is noteworthy that the Fc-RP1 peptide synthesized here is a prototype of a bioconjugation strategy, but it still is a compound with great biological activity against neglected and fish diseases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Compuestos Ferrosos/química , Metalocenos/química , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/toxicidad , Bacterias/efectos de los fármacos , Leishmania/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Permeabilidad
14.
Photodiagnosis Photodyn Ther ; 30: 101676, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32001331

RESUMEN

Since Leishmania parasites exhibit resistance outbreaks to drugs conventionally used in medical treatments, research of new antileishmanial compounds or alternative treatment therapies are essential. A focus of interest has been the implementation of light-based therapies such as photodynamic therapy, where inorganic compounds such as titanium dioxide have shown promising results as drug delivery carriers. In this work, nanoparticles of TiO2 doped with Zn (TiO2/Zn) were synthesized through solution combustion route and with hypericin (HY) in order to enhance its photodynamic activity in the visible light region. Scanning (SEM) and transmission (TEM) electron microscopy analyses showed particles of (TiO2/Zn) with sizes smaller than 20 nm and formation of aggregates smaller than 1 µm, whilst electron diffraction spectroscopy (EDS) analysis ensured the presence of Zn in the system. The association of the TiO2/Zn with HY (TiO2/Zn-HY) was further confirmed by fluorescence spectrometry. Measurements of its cellular uptake showed the presence of smaller molecules into promastigotes after 120 min incubation. TiO2/Zn-HY showed good antileishmanial activity (EC50 of 17.5 ± 0.2 µg mL-1) and low cytotoxicity against murine macrophages (CC50 35.2 ± 0.3 µg mL-1) in the visible light (22 mW cm-2; 52.8 J cm-2). Moreover, in the in vivo analysis, TiO2/Zn-HY decreased the parasite load of L. amazonensis - BALB/c infected mice by 43% - 58% after a combination of blue and red light presenting 22 mW cm-2 of intensity and 52.8 J cm-2 of fluency delivered. All together, these data indicate a new combined system of nanoparticles associated with a photosensitizer and PDT as alternative to amphotericin B for the treatment of cutaneous leishmaniasis.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Nanopartículas , Fotoquimioterapia , Animales , Antracenos , Leishmaniasis Cutánea/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Perileno/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Titanio , Zinc
15.
Rev. Soc. Bras. Med. Trop ; 53: e20190503, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1101448

RESUMEN

Abstract Introduction: The genus Rhodnius in the subfamily Triatominae comprises 20 species, which can transmit Trypanosoma cruzi and Trypanosoma rangeli. Due to the development of molecular techniques, Triatominae species can now be characterized by mitochondrial and nuclear markers, making it possible to verify and/or correct the existing data on these species. The results achieved in this study provide a more detailed and accurate differentiation of the Rhodnius species, helping the establishment of a more appropriate classification. Methods: Data collection was performed by DNA analysis, morphological and morphometric studies to distinguish four populations of R. neglectus and four of R. prolixus. Phylogenetic data were compared to morphological and morphometric data. Results: The analysis of Cytb fragments suggests that the four colonies designated to Rhodnius neglectus as well as those of R. prolixus were correctly identified. Conclusions: The morphological characters observed in the specimens of the colonies originally identified as R. prolixus and R. neglectus, such as the presence or absence of collar in the eggs, the patterns of the median process of the pygophore, and anterolateral angle, are consistent with the species. Geometric morphometrics also show an intraspecific variability in R. prolixus.


Asunto(s)
Animales , Masculino , Rhodnius/clasificación , Insectos Vectores/anatomía & histología , Filogenia , Rhodnius/anatomía & histología , Rhodnius/genética , Especificidad de la Especie , Enfermedad de Chagas/transmisión , Análisis de Secuencia de ADN , Insectos Vectores/clasificación , Insectos Vectores/genética
16.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398812

RESUMEN

Recent scientific research has shown the use of chlorin, phthalocyanines, and porphyrins derivatives as photosensitizers in photodynamic therapy in the treatment of various pathologies, including some of the major skin diseases. Thus, the main goal of this critical review is to catalog the papers that used these photosensitizers in the treatment of acne vulgaris, psoriasis, papillomavirus infections, cutaneous leishmaniasis, and skin rejuvenation, and to explore the photodynamic therapy mechanisms against these conditions alongside their clinical benefits.


Asunto(s)
Indoles/uso terapéutico , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/uso terapéutico , Enfermedades de la Piel/tratamiento farmacológico , Piel/efectos de los fármacos , Animales , Humanos , Indoles/farmacología , Isoindoles , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Piel/patología , Enfermedades de la Piel/diagnóstico , Enfermedades de la Piel/etiología , Resultado del Tratamiento
17.
Eur J Med Chem ; 171: 116-128, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913526

RESUMEN

Leishmaniasis is a group of diseases caused by protozoan parasites from the genus Leishmania. There are estimated 1.3 million new cases annually with a mortality of 20,000-30,000 per year, when patients are left untreated. Current chemotherapeutic drugs available present high toxicity and low efficacy, the latter mainly due to the emergence of drug-resistant parasites, which makes discovery of novel, safe, and efficacious antileishmanial drugs mandatory. The present work reports the synthesis, characterization by ESI-MS, 1H and 13C NMR, and FTIR techniques as well as in vitro and in vivo evaluation of leishmanicidal activity of guanidines derivatives presenting lower toxicity. Among ten investigated compounds, all being guanidines containing a benzoyl, a benzyl, and a substituted phenyl moiety, LQOF-G2 (IC50-ama 5.6 µM; SI = 131.8) and LQOF-G7 (IC50-ama 7.1 µM; SI = 87.1) were the most active against L. amazonensis intracellular amastigote, showing low cytotoxicity to the host cells according to their selectivity index. The most promising compound, LQOF-G2, was further evaluated in an in vivo model and was able to decrease 60% of the parasite load in foot lesions at a dose of 0.25 mg/kg/day. Moreover, this guanidine derivative demonstrated reduced hepatotoxicity compared to other leishmanicidal compounds and did not show nephrotoxicity, as determined by the analyses of biomarkers of hepatic damage and renal function, which make this compound a potential new hit for therapy against leishmaniasis.


Asunto(s)
Antiprotozoarios/farmacología , Guanidinas/farmacología , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Femenino , Guanidinas/síntesis química , Guanidinas/química , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
18.
Rev. bras. farmacogn ; 28(6): 673-677, Nov.-Dec. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-977745

RESUMEN

ABSTRACT Leishmania infantum is an etiologic agent of visceral leishmaniasis. This disease is a neglected disease that can be fatal if not treated and additionally, the few therapeutic option present several drawbacks, including difficult route of administration and toxicity, which turn the search for new therapeutic alternatives necessary. Herein, we evaluated the leishmanicidal in vitro activity of the solanum extract from Solanum lycocarpum A. St.-Hil., Solanaceae, and the isolated alkaloids solasodine, solamargine and solasonine against promastigotes and intracellular amastigotes of L. infantum. Solasodine (IC50-pro = 4.7 µg/ml; IC50-ama = 10.8 µg/ml) and solamargine (IC50-pro = 8.1 µg/ml; IC50-ama = 3.0 µg/ml) exhibited interesting leishmanicidal ativity. Solasonine was approximately four-times (Selective Index 3.7) more selective to the parasite than to the host cells. This data suggest that solasonine might be considered as a potential drug candidate for leishmaniasis treatment.

19.
Mem Inst Oswaldo Cruz ; 113(3): 197-201, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29412359

RESUMEN

Visceral leishmaniasis (VL) is fatal if left untreated. Infected dogs are important reservoirs of the disease, and thus specific identification of infected animals is very important. Several diagnostic tests have been developed for canine VL (CVL); however, these tests show varied specificity and sensitivity. The present study describes the recombinant protein rLc36, expressed by Leishmania infantum, as potential antigen for more sensitive and specific diagnosis of CVL based on an immunoenzymatic assay. The concentration of 1.0 µg/mL of rLc36 enabled differentiation of positive and negative sera and showed a sensitivity of 85% and specificity of 71% (with 95% confidence), with an accuracy of 76%.


Asunto(s)
Enfermedades de los Perros/diagnóstico , Leishmania infantum/inmunología , Leishmaniasis Visceral/veterinaria , Proteínas Protozoarias/sangre , Animales , Perros , Electroforesis en Gel de Poliacrilamida/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Leishmaniasis Visceral/diagnóstico , Masculino , Ratones , Sensibilidad y Especificidad
20.
Am J Trop Med Hyg ; 98(2): 453-463, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29313485

RESUMEN

Chagas disease affects between six and seven million people. Its etiological agent, Trypanosoma cruzi, is classified into six discrete typing units (DTUs). The biological study of 11 T. cruzi strains presented here included four parameters: growth kinetics, parasitemia curves, rate of macrophage infection, and serology to evaluate IgM, total IgG, IgG1, IgG2a, and IgG3. Sequencing of small subunit of ribosomal RNA (SSU rRNA)was performed and the T. cruzi strains were classified into three DTUs. When their growth in liver infusion tryptose medium was represented in curves, differences among the strains could be noted. The parasitemia profile varied among the strains from the TcI, TcII, and TcIII groups, and the 11 T. cruzi strains produced distinct parasitemia levels in infected BALB/c. The TcI group presented the highest rate of macrophage infection by amastigotes, followed by TcII and TcIII. Reactivity to immunoglobulins was observed in the TcI, TcII, and TcIII; all the animals infected with the different strains of T. cruzi showed anti-T. cruzi antibodies. The molecular study presented here resulted in the classification of the T. cruzi strains into the TcI (Bolivia, T lenti, Tm, SC90); TcII (Famema, SC96, SI8, Y); and TcIII (QMM3, QMM5, SI5) groups. These biological and molecular results from 11 T. cruzi strains clarified the factors involved in the biology of the parasite and its hosts. The collection of triatomine (vector) species, and the study of geographic distribution, as well as biological and molecular characterization of the parasite, will contribute to the reporting and surveillance measures in Brazilian states.


Asunto(s)
Genotipo , Trypanosoma cruzi/genética , Animales , Brasil/epidemiología , Enfermedad de Chagas/epidemiología , Humanos , Biología Molecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA