Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
SLAS Discov ; 27(4): 219-228, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35058188

RESUMEN

Huntington's disease (HD) is the most common monogenic neurodegenerative disease and is fatal. CAG repeat expansions in mutant Huntingtin (mHTT) exon 1 encode for polyglutamine (polyQ) stretches and influence age of onset and disease severity, depending on their length. mHTT is more structured compared to wild-type (wt) HTT, resulting in a decreased N-terminal conformational flexibility. mHTT inflexibility may contribute to both gain of function toxicity, due to increased mHTT aggregation propensity, but also to loss of function phenotypes, due to decreased interactions with binding partners. High-throughput-screening techniques to identify mHTT flexibility states and potential flexibility modifying small molecules are currently lacking. Here, we propose a novel approach for identifying small molecules that restore mHTT's conformational flexibility in human patient fibroblasts. We have applied a well-established antibody-based time-resolved Förster resonance energy transfer (TR-FRET) immunoassay, which measures endogenous HTT flexibility using two validated HTT-specific antibodies, to a high-throughput screening platform. By performing a small-scale compound screen, we identified several small molecules that can partially rescue mHTT inflexibility, presumably by altering HTT post-translational modifications. Thus, we demonstrated that the HTT TR-FRET immunoassay can be miniaturized and applied to a compound screening workflow in patient cells. This automated assay can now be used in large screening campaigns to identify previously unknown HD drugs and drug targets.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
2.
Dis Model Mech ; 14(6)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34114604

RESUMEN

Parkinson's disease (PD) is a fatal neurodegenerative disorder that is primarily caused by the degeneration and loss of dopaminergic neurons of the substantia nigra in the ventral midbrain. Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of late-onset PD identified to date, with G2019S being the most frequent LRRK2 mutation, which is responsible for up to 1-2% of sporadic PD and up to 6% of familial PD cases. As no treatment is available for this devastating disease, developing new therapeutic strategies is of foremost importance. Cellular models are commonly used for testing novel potential neuroprotective compounds. However, current cellular PD models either lack physiological relevance to dopaminergic neurons or are too complex and costly for scaling up the production process and for screening purposes. In order to combine biological relevance and throughput, we have developed a PD model in Lund human mesencephalic (LUHMES) cell-derived dopaminergic neurons by overexpressing wild-type (WT) and G2019S LRRK2 proteins. We show that these cells can differentiate into dopaminergic-like neurons and that expression of mutant LRRK2 causes a range of different phenotypes, including reduced nuclear eccentricity, altered mitochondrial and lysosomal morphologies, and increased dopaminergic cell death. This model could be used to elucidate G2019S LRRK2-mediated dopaminergic neural dysfunction and to identify novel molecular targets for disease intervention. In addition, our model could be applied to high-throughput and phenotypic screenings for the identification of novel PD therapeutics.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/fisiología , Modelos Biológicos , Enfermedad de Parkinson/metabolismo , Codón , Neuronas Dopaminérgicas/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA