Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Neurobiol Stress ; 13: 100253, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33344708

RESUMEN

Brain-derived neurotrophic factor (BDNF) plays essential roles in GABAergic interneuron development. The common BDNF val66met polymorphism, leads to decreased activity-dependent release of BDNF. The current study used a humanized mouse model of the BDNF val66met polymorphism to determine how reduced activity-dependent release of BDNF, both on its own, and in combination with chronic adolescent stress hormone, impact hippocampal GABAergic interneuron cell density and dendrite morphology. Male and female Val/Val and Met/Met mice were exposed to corticosterone (CORT) or placebo in their drinking water from weeks 6-8, before brains were perfuse-fixed at 15 weeks. Cell density and dendrite morphology of immunofluorescent labelled inhibitory interneurons; somatostatin, parvalbumin and calretinin in the CA1, and 3 and dentate gyrus (DG) across the dorsal (DHP) and ventral hippocampus (VHP) were assessed by confocal z-stack imaging, and IMARIS dendritic mapping software. Mice with the Met/Met genotype showed significantly lower somatostatin cell density compared to Val/Val controls in the DHP, and altered somatostatin interneuron dendrite morphology including branch depth, and spine density. Parvalbumin-positive interneurons were unchanged between genotype groups, however BDNF val66met genotype influenced the dendritic volume, branch level and spine density of parvalbumin interneurons differentially across hippocampal subregions. Contrary to this, no such effects were observed for calretinin-positive interneurons. Adolescent exposure to CORT treatment also significantly altered somatostatin and parvalbumin dendrite branch level and the combined effect of Met/Met genotype and CORT treatment significantly reduced somatostatin and parvalbumin dendrite spine density. In sum, the BDNFVal66Met polymorphism significantly alters somatostatin and parvalbumin-positive interneuron cell development and dendrite morphology. Additionally, we also report a compounding effect of the Met/Met genotype and chronic adolescent CORT treatment on dendrite spine density, indicating that adolescence is a sensitive period of risk for Val66Met polymorphism carriers.

2.
Behav Brain Res ; 372: 111984, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31150746

RESUMEN

Schizophrenia is a debilitating disorder characterised by three main symptom categories: positive, negative and cognitive. Cognitive symptoms emerge first, and currently do not have appropriate treatments, despite being a strong predictor of the severity and progress of the illness. Cognitive deficits are strongly associated with the dysfunction of GABAergic parvalbumin interneurons (PV-IN). PV-IN are supported by Brain-Derived Neurotrophic Factor (BDNF) via its receptor Tropomyosin-related Kinase B (TrkB). The main aim of this study was to investigate the cognitive and affective consequences of disrupted BDNF-TrkB signalling at PV-IN. We crossed PV-Cre mice with heterozygous TrkB floxed mice (PV-Cre:Fl+/-) to knock-down TrkB receptors on PV-IN. Male and female mice underwent a battery of tests including: Y-Maze, Cheeseboard Maze, Elevated Plus Maze, and Locomotor activity. Co-expression of PV and TrkB in the hippocampus was assessed by fluorescent immunohistochemistry and detailed stereology. Sex-specific spatial memory impairments were found in the Y-Maze. Only male PV-Cre:Fl+/- mice showed no preference for the novel arm. Furthermore, there was a male specific genotype difference in memory retrieval in the Cheeseboard Maze. Male PV-Cre:Fl+/- mice were more preservative in their learning than male PV-Cre control mice. Overall, the evidence from this study suggests that sex had a developmental influence on this constitutive model. Male spatial memory was altered by the disruption to BDNF-TrkB signalling at PV-IN. This aligns with males showing more severe cognitive dysfunction in schizophrenia.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Interneuronas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Memoria Espacial/fisiología , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/fisiología , Cognición/fisiología , Femenino , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria , Ratones , Ratones Endogámicos C57BL , Parvalbúminas/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA