Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(11)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34835587

RESUMEN

Anodic titanium dioxide (TiO2) nanotubes were found to be active photocatalysts. These photocatalysts possess a high surface area, even when supported, rendering them potential candidates for water treatment. In this work, photocatalytic surfaces were produced by anodizing commercially pure Ti plates using two different electrolyte compositions and correspondingly diverse process parameters. Changes in the physical and chemical stability as well as photocatalytic activity were studied over a fifty-two-week aging process. During this period, the nanotubular surfaces were exposed to flowing synthetic greywater, solar irradiation, and the natural environment. The physical and phase stability of the materials anodized using the organic electrolyte were found to be outstanding and no degradation or change in crystalline structure was observed. On the other hand, materials anodized in the aqueous electrolyte proved to suffer from light-induced phase transition from anatase to rutile. Surfaces synthesized in the organic electrolyte were more resistant to fouling and showed a better tendency to recover photocatalytic activity upon cleaning. In conclusion, the nanotubes produced in the organic electrolyte proved to be stable, rendering them potentially suitable for real-life applications.

2.
Nanomaterials (Basel) ; 11(3)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799849

RESUMEN

Photocatalysis has long been touted as one of the most promising technologies for environmental remediation. The ability of photocatalysts to degrade a host of different pollutants, especially recalcitrant molecules, is certainly appealing. Titanium dioxide (TiO2) has been used extensively for this purpose. Anodic oxidation allows for the synthesis of a highly ordered nanotubular structure with a high degree of tunability. In this study, a series of TiO2 arrays were synthesised using different electrolytes and different potentials. Mixed anatase-rutile photocatalysts with excellent wettability were achieved with all the experimental iterations. Under UVA light, all the materials showed significant photoactivity towards different organic pollutants. The nanotubes synthesised in the ethylene glycol-based electrolyte exhibited the best performance, with near complete degradation of all the pollutants. The antibacterial activity of this same material was similarly high, with extremely low bacterial survival rates. Increasing the voltage resulted in wider and longer nanotubes, characteristics which increase the level of photocatalytic activity. The ease of synthesis coupled with the excellent activity makes this a viable material that can be used in flat-plate reactors and that is suitable for photocatalytic water treatment.

3.
ACS Appl Bio Mater ; 3(7): 4417-4426, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35025440

RESUMEN

This work attempts to produce photocatalytic surfaces for large-scale applications by depositing nanostructured coatings on polymeric substrates. ZnO/poly(methyl methacrylate) (PMMA) composites were prepared by low-temperature atomic layer deposition (ALD) of ZnO on PMMA substrates. In addition, to increase the photocatalytic and antibacterial activities of ZnO films, Ag nanoparticles were added on ZnO surfaces using plasma-enhanced ALD. The morphology, crystallinity, and chemical composition of the specimens were meticulously examined by scanning and transmission electron microscopies, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses. The noteworthy photocatalytic activity of the nanocomposites was proved by the degradation of the following organic pollutants in aqueous solution: methylene blue, paracetamol, and sodium lauryl sulfate. The antibacterial properties of the samples were tested using Escherichia coli as a model organism. Moreover, the possible toxic effects of the specimens were checked by biological tests. The present results unambiguously indicate the Ag/ZnO/PMMA nanocomposite as a powerful tool for an advanced wastewater treatment technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA