Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396691

RESUMEN

Alpha-1 antitrypsin-overexpressing mesenchymal stromal/stem cells (AAT-MSCs) showed improved innate properties with a faster proliferation rate when studied for their protective effects in mouse models of diseases. Here, we investigated the potential mechanism(s) by which AAT gene insertion increases MSC proliferation. Human bone marrow-derived primary or immortalized MSCs (iMSCs) or AAT-MSCs (iAAT-MSCs) were used in the study. Cell proliferation was measured by cell counting and cell cycle analysis. Possible pathways involved in the pro-proliferation effect of AAT were investigated by measuring mRNA and protein expression of key cell cycle genes. Interval cell counting showed increased proliferation in AAT-MSCs or iAAT-MSCs compared to their corresponding MSC controls. Cell cycle analysis revealed more cells progressing into the S and G2/M phases in iAAT-MSCs, with a notable increase in the cell cycle protein, Cyclin D1. Moreover, treatment with Cyclin D1 inhibitors showed that the increase in proliferation is due to Cyclin D1 and that the AAT protein is upstream and a positive regulator of Cyclin D1. Furthermore, AAT's effect on Cyclin D1 is independent of the Wnt signaling pathway as there were no differences in the expression of regulatory proteins, including GSK3ß and ß-Catenin in iMSC and iAAT-MSCs. In summary, our results indicate that AAT gene insertion in an immortalized MSC cell line increases cell proliferation and growth by increasing Cyclin D1 expression and consequently causing cells to progress through the cell cycle at a significantly faster rate.


Asunto(s)
Ciclina D1 , Células Madre Mesenquimatosas , alfa 1-Antitripsina , Animales , Humanos , Ratones , Proliferación Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Células Madre Mesenquimatosas/metabolismo , Regulación hacia Arriba , Vía de Señalización Wnt , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
3.
bioRxiv ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37961658

RESUMEN

Alaph-1 antitrypsin overexpressing mesenchymal stromal/stem cells (AAT-MSCs) showed improved innate properties with a faster proliferation rate when studied for their protective effects in mouse models of diseases. Here, we investigated the potential mechanism(s) by which AAT gene insertion increases MSC proliferation. Human bone marrow-derived primary or immortalized MSCs (iMSCs) or AAT-MSCs (iAAT-MSCs) were used in the study. Cell proliferation was measured by cell counting and cell cycle analysis. Possible pathways involved in the pro-proliferation effect of AAT were investigated by measuring mRNA and protein expression of key cell cycle genes. Interval cell counting showed increased proliferation in AAT-MSCs or iAAT-MSCs compared to their corresponding MSC controls. Cell cycle analysis revealed more cells progressing into the S and G2/M phases in iAAT-MSCs, with a notable increase in the cell cycle protein, Cyclin D1. Moreover, treatment with Cyclin D1 inhibitors showed that the increase in proliferation is due to Cyclin D1 and that the AAT protein is upstream and a positive regulator of Cyclin D1. Furthermore, AAT's effect on Cyclin D1 is independent of the Wnt signaling pathway as there were no differences in the expression of regulatory proteins, including GSK3ß and ß-Catenin in iMSC and iAAT-MSCs. In summary, our results indicate that AAT gene insertion in an immortalized MSC cell line increases cell proliferation and growth by increasing Cyclin D1 expression and consequently causing cells to progress through the cell cycle at a significantly faster rate.

4.
Res Sq ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609340

RESUMEN

Chronic pancreatitis (CP) is a progressive inflammatory disorder that impairs endocrine and exocrine function. Our previous work suggests that mesenchymal stem/stromal cells (MSCs) and MSCs overexpressing alpha-1 antitrypsin (AAT-MSCs) could be therapeutic tools for CP treatment in mouse models. However, primary MSCs have a predisposition to undergo senescence during culture expansion which limits their therapeutic applications. Here we generated and characterized immortalized human MSCs (iMSCs) and AAT-MSCs (iAAT-MSCs) and tested their protective effect on 2,4,6-Trinitrobenzenesulfonic acid (TNBS) -induced acinar cell death in an in vitro cell culture system. Primary MSCs were immortalized by transduction with simian virus 40 large T antigen (SV40LT), and the resulting iMSC and iAAT-MSC lines were analyzed for proliferation, senescence, phenotype, and multi-differentiation potential. Subsequently, the impact of these cells on TNBS-induced cell death was measured and compared. Both apoptosis and ferroptosis pathways were investigated by assessing changes of critical factors before and after cell treatment. Coculture of iMSCs and iAAT-MSCs with acinar cell lines inhibited early apoptosis induced by TNBS, reduced ER stress, and reversed TNBS-induced protein reduction at tight junctions. Additionally, iMSCs and iAAT-MSCs exerted such protection by regulating mitochondrial respiration, ATP content, and ROS production in TNBS-induced acinar cells. Furthermore, iMSCs and iAAT-MSCs ameliorated ferroptosis by regulating the ferritin heavy chain 1 (FTH1)/protein disulfide isomerase (PDI)/glutathione peroxide 4 (GPX4) signaling pathways and by modulating ROS function and iron generation in acinar cells. These findings identified ferroptosis as one of the mechanisms that leads to TNBS-induced cell death and offer mechanistic insights relevant to using stem cell therapy for the treatment of CP.

5.
Biotechnol Bioeng ; 120(11): 3148-3162, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37475681

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors are a promising platform for in vivo gene therapies. However, cost-effective, well-characterized processes necessary to manufacture rAAV therapeutics are challenging to develop without an understanding of how process parameters (PPs) affect rAAV product quality attributes (PQAs). In this work, a central composite orthogonal experimental design was employed to examine the influence of four PPs for transient transfection complex formation (polyethylenimine:DNA [PEI:DNA] ratio, total DNA/cell, cocktail volume, and incubation time) on three rAAV PQAs related to capsid content (vector genome titer, vector genome:capsid particle ratio, and two-dimensional vector genome titer ratio). A regression model was established for each PQA using partial least squares, and a design space (DS) was defined in which Monte Carlo simulations predicted < 1% probability of failure (POF) to meet predetermined PQA specifications. Of the three PQAs, viral genome titer was most strongly correlated with changes in complexation PPs. The DS and acceptable PP ranges were largest when incubation time and cocktail volume were kept at mid-high setpoints, and PEI:DNA ratio and total DNA/cell were at low-mid setpoints. Verification experiments confirmed model predictive capability, and this work establishes a framework for studying other rAAV PPs and their relationship to PQAs.

6.
BMC Biotechnol ; 23(1): 7, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882740

RESUMEN

BACKGROUND: Mammalian cell lines are frequently used as protein expression hosts because of their ability to correctly fold and assemble complex proteins, produce them at high titers, and confer post-translational modifications (PTMs) critical to proper function. Increasing demand for proteins with human-like PTMs, particularly viral proteins and vectors, have made human embryonic kidney 293 (HEK293) cells an increasingly popular host. The need to engineer more productive HEK293 platforms and the ongoing nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented an opportunity to study strategies to improve viral protein expression in transient and stable HEK293 platforms. RESULTS: Initial process development was done at 24 deep well plate (DWP) -scale to screen transient processes and stable clonal cell lines for recombinant SARS-CoV-2 receptor binding domain (rRBD) titer. Nine DNA vectors that drove rRBD production under different promoters and optionally contained Epstein-Barr virus (EBV) elements to promote episomal expression were screened for transient rRBD production at 37 °C or 32 °C. Use of the cytomegalovirus (CMV) promoter to drive expression at 32 °C led to the highest transient protein titers, but inclusion of episomal expression elements did not augment titer. In parallel, four clonal cell lines with titers higher than that of the selected stable pool were identified in a batch screen. Flask-scale transient transfection and stable fed-batch processes were then established that produced rRBD up to 100 mg/L and 140 mg/L, respectively. While a bio-layer interferometry (BLI) assay was crucial for efficiently screening DWP batch titers, an enzyme-linked immunosorbent assay (ELISA) was used to compare titers from the flask-scale batches due to varying matrix effects from different cell culture media compositions. CONCLUSION: Comparing yields from the flask-scale batches revealed that stable fed-batch cultures produced up to 2.1x more rRBD than transient processes. The stable cell lines developed in this work are the first reported clonal, HEK293-derived rRBD producers and have titers up to 140 mg/L. As stable production platforms are more economically favorable for long-term protein production at large scales, investigation of strategies to increase the efficiency of high-titer stable cell line generation in Expi293F or other HEK293 hosts is warranted.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Animales , Humanos , SARS-CoV-2/genética , Células HEK293 , Herpesvirus Humano 4 , Riñón , Mamíferos
7.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36678589

RESUMEN

Browning of white adipose tissue (WAT) is suggested as a promising therapeutic approach to induce energy expenditure and counteract obesity and its associated complications. Systemic depletion of spinophilin (SPL) increases metabolism and improves energy balance in mice. In this study, we explored the mechanistic insight of SPL action in WAT browning. Gene expression and mitochondria tracker staining showed that visceral white adipose tissue (vWAT) harvested from SPL KO mice had a higher expression of classic browning-related genes, including uncoupling protein 1 (UCP1), Cell death inducing DFFA like effector A (CIDEA) and PR domain containing 16 (PRDM16), as well as a higher mtDNA level compared to vWAT from wild type (WT) control mice. When adipogenesis was induced in pre-adipocytes harvested from KO and WT mice ex vivo using the PPAR-γ agonist rosiglitazone (Rosi), SPL KO cells showed increased browning marker gene expression and mitochondria function compared to cells from WT mice. Increased PPAR-γ protein expression and nucleus retention in vWAT from SPL KO mice after Rosi treatment were also observed. The effect of SPL on vWAT browning was further confirmed in vivo when WT and KO mice were treated with Rosi. As a result, SPL KO mice lost body weight, which was associated with increased expression of browning maker genes in vWAT. In summary, our data demonstrate the critical role of SPL in the regulation of WAT browning.

8.
Diabetes ; 71(12): 2642-2655, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36084289

RESUMEN

Islet/ß-cell transplantation offers great hope for patients with type 1 diabetes. We assessed the mechanisms of how intrahepatic coinfusion of human α-1 antitrypsin (hAAT)-engineered mesenchymal stromal cells (hAAT-MSCs) improves survival of human islet grafts posttransplantation (PT). Longitudinal in vivo bioluminescence imaging studies identified significantly more islets in the livers bearing islets cotransplanted with hAAT-MSCs compared with islets transplanted alone. In vitro mechanistic studies revealed that hAAT-MSCs inhibit macrophage migration and suppress IFN-γ-induced M1-like macrophages while promoting IL-4-induced M2-like macrophages. In vivo this translated to significantly reduced CD11c+ and F4/80+ cells and increased CD206+ cells around islets cotransplanted with hAAT-MSCs as identified by multiplex immunofluorescence staining. Recipient-derived F4/80+and CD11b+ macrophages were mainly present in the periphery of an islet, while CD11c+ and CD206+ cells appeared inside an islet. hAAT-MSCs inhibited macrophage migration and skewed the M1-like phenotype toward an M2 phenotype both in vitro and in vivo, which may have favored islet survival. These data provide evidence that hAAT-MSCs cotransplanted with islets remain in the liver and shift macrophages to a protective state that favors islet survival. This novel strategy may be used to enhance ß-cell survival during islet/ß-cell transplantation for the treatment of type 1 diabetes or other diseases.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Trasplante de Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Supervivencia de Injerto , Diabetes Mellitus Tipo 1/metabolismo , Ratones Endogámicos C57BL , Trasplante de Islotes Pancreáticos/métodos , Macrófagos , Islotes Pancreáticos/metabolismo
9.
Injury ; 53(10): 3263-3268, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35970636

RESUMEN

BACKGROUND: Interpersonal violent injury is a public health crisis, disproportionately affecting young people of color. We aimed to evaluate associations between sociobehavioral predictors and first-time violent injury, and to develop a predictive risk score for violent injury. METHODS: We performed a retrospective case-cohort study of adolescents aged 12-18 years. Multivariable logistic regression was used to estimate associations between 35 candidate variables and interpersonal first-time violent injury resulting in an emergency department (ED) visit. Multiple imputation was used to account for missing values and a risk score was developed by multiplying regression coefficients by 10 to generate a composite tool to predict initial violent injury (IVI). Discrimination and calibration were assessed using 10-fold cross validation. RESULTS: 19,210 adolescents were included, 276 (1.4%) as victims of IVI. The final model, the Initial Violent Injury Risk Prediction Tool (IVI-RPT), included: age, fight within the prior year, trouble with the law, and alcohol use. IVI-RPT scores were categorized as: 0-7 (low risk), 8-16 (moderate), and 17-26 (high), and IVI prevalence was 0.8% (95% confidence interval [CI]: 0.6%, 0.9%), 2.5% (95% CI: 1.9%, 3.1%), and 5.3% (95% CI: 4.1%, 6.6%), respectively. The area under the receiver operating characteristic curve was 0.70 (95% CI: 0.66, 0.73), while the slope of the calibration curve was 1.1 (95% CI: 0.9, 1.2). CONCLUSIONS: We developed a promising clinical prediction instrument, the IVI-RPT, that categorizes individuals into risk groups with increasing probabilities of violent injury. External validation of this tool is required prior to clinical practice implementation.


Asunto(s)
Estudios de Cohortes , Adolescente , Humanos , Modelos Logísticos , Curva ROC , Estudios Retrospectivos , Factores de Riesgo
10.
Biomedicines ; 9(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34829924

RESUMEN

Chronic pancreatitis (CP) is characterized by pancreatic inflammation, fibrosis, and abdominal pain that is challenging to treat. Mesenchymal stromal cells (MSCs) overexpressing human alpha-1 antitrypsin (hAAT-MSCs) showed improved mobility and protective functions over native MSCs in nonobese diabetic mice. We investigated whether hAAT-MSCs could mitigate CP and its associated pain using trinitrobenzene sulfonic acid (TNBS)-induced CP mouse models. CP mice were given native human MSCs or hAAT-MSCs (0.5 × 106 cells/mouse, i.v., n = 6-8/group). The index of visceral pain was measured by graduated von Frey filaments. Pancreatic morphology and pancreatic mast cell count were analyzed by morphological stains. Nociceptor transient receptor potential vanilloid 1 (TRPV1) expression in dorsal root ganglia (DRG) was determined by immunohistochemistry. hAAT-MSC-treated CP mice best preserved pancreatic morphology and histology. MSC or hAAT-MSC infusion reduced abdominal pain sensitivities. hAAT-MSC therapy also suppressed TRPV1 expression in DRG and reduced pancreatic mast cell density induced by TNBS. Overall, hAAT-MSCs reduced pain and mitigated pancreatic inflammation in CP equal to MSCs with a trend toward a higher pancreatic weight and better pain relief in the hAAT-MSC group compared to the MSC group. Both MSCs and hAAT-MSCs might be used as a novel therapeutic tool for CP-related pain.

11.
Curr Opin Biotechnol ; 71: 65-76, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273809

RESUMEN

Recombinant adeno-associated virus (rAAV) is an increasingly important gene therapy vector, but its properties present unique challenges to critical quality attribute (CQA) identification and analytics development. Advances in, and ongoing hurdles to, characterizing rAAV proteins, nucleic acids, and vector potency are discussed in this review. For nucleic acids and vector potency, current analytical techniques for defined CQAs would benefit from further optimization, while for proteins, more complete characterization and mapping of properties to safety and efficacy is needed to finalize CQAs. The benefits of leveraging reference vectors to validate analytics and CQA ranges are also proposed. Once defined, CQA specifications can be used to establish target parameters for and inform the development of next generation rAAV processes.


Asunto(s)
Dependovirus , Terapia Genética , Dependovirus/genética , Vectores Genéticos/genética , Estándares de Referencia
12.
Biology (Basel) ; 11(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35053007

RESUMEN

Extracellular vesicles (EVs) mediate many therapeutic effects of stem cells during cellular therapies. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) were manufactured to overexpress the human antiprotease alpha-1 antitrypsin (hAAT) and studied to compare the EV production compared to lentivirus treated control MSCs. The goal of this study was to compare protein profiles in the EVs/exosomes of control and hAAT-MSCs using unbiased, high resolution liquid chromatography and mass spectrometry to explore differences. Nanoparticle tracking analysis (NTA) showed that the particle size of the EVs from control MSCs or hAAT-MSCs ranged from 30 to 200 nm. Both MSCs and hAAT-MSCs expressed exosome-associated proteins, including CD63, CD81, and CD9. hAAT-MSCs also expressed high levels of hAAT. We next performed proteomic analysis of EVs from three healthy donor cell lines. Exosomes collected from cell supernatant were classified by GO analysis which showed proteins important to cell adhesion and extracellular matrix organization. However, there were differences between exosomes from control MSCs and hAAT-MSCs in cytokine signaling of the immune system, stem cell differentiation, and carbohydrate metabolism (p < 0.05). These results show that hAAT-MSC exosomes contain a different profile of paracrine effectors with altered immune function, impacts on MSC stemness, differentiation, and prevention of cell apoptosis and survival that could contribute to improved therapeutic functions.

13.
PLoS One ; 12(3): e0172632, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28296891

RESUMEN

Renal cell carcinoma (RCC) is among the top ten most common forms of cancer and is the most common malignancy of the kidney. Clear cell renal carcinoma (cc-RCC), the most common type of RCC, is one of the most refractory cancers with an incidence that is on the rise. Screening of plant extracts in search of new anti-cancer agents resulted in the discovery of englerin A, a guaiane sesquiterpene with potent cytotoxicity against renal cancer cells and a small subset of other cancer cells. Though a few cellular targets have been identified for englerin A, it is still not clear what mechanisms account for the cytotoxicity of englerin A in RCC, which occurs at concentrations well below those used to engage the targets previously identified. Unlike any prior study, the current study used a systems biology approach to explore the mechanism(s) of action of englerin A. Metabolomics analyses indicated that englerin A profoundly altered lipid metabolism by 24 h in cc-RCC cell lines and generated significant levels of ceramides that were highly toxic to these cells. Microarray analyses determined that englerin A induced ER stress signaling and an acute inflammatory response, which was confirmed by quantitative PCR and Western Blot analyses. Additionally, fluorescence confocal microscopy revealed that englerin A at 25 nM disrupted the morphology of the ER confirming the deleterious effect of englerin A on the ER. Collectively, our findings suggest that cc-RCC is highly sensitive to disruptions in lipid metabolism and ER stress and that these vulnerabilities can be targeted for the treatment of cc-RCC and possibly other lipid storing cancers. Furthermore, our results suggest that ceramides may be a mediator of some of the actions of englerin A. Lastly, the acute inflammatory response induced by englerin A may mediate anti-tumor immunity.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inflamación/inducido químicamente , Neoplasias Renales/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Sesquiterpenos de Guayano/farmacología , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/patología
14.
Chem Commun (Camb) ; 51(37): 7770-80, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25873312

RESUMEN

This article summarizes a recently developed approach for the preparation of membrane materials by the self-assembly of inorganic, polymeric or hybrid nanoparticles, with the focus on functional membranes possessing permselectivity. Two types of such membranes are discussed, those possessing size and charge selectivity suitable for ultra- and nanofiltration and chemoselective separation, and those possessing proton or lithium transport properties suitable for fuel cell and lithium battery applications, respectively. This article describes the preparation methods of nanoparticle membranes, as well as their mechanical, molecular, and ionic transport properties.

15.
BMC Cancer ; 7: 142, 2007 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-17662137

RESUMEN

BACKGROUND: Docetaxel is the standard first-line agent for the treatment of androgen-independent prostate cancer (AIPC). The combination of docetaxel with molecularly targeted therapies may offer the potential to increase the efficacy and decrease the toxicity of cytotoxic chemotherapy for prostate cancer. Previous studies demonstrate activation of the human epidermal growth factor receptor (EGFR) in prostate cancer. Erlotinib is a specific inhibitor of the tyrosine-kinase activity of EGFR. The goal of this study is to determine the anti-cancer activity docetaxel combined with erlotinib for the treatment of elderly subjects with AIPC. METHODS: This is a multi-institutional Phase II study in patients with histologically confirmed adenocarcinoma of the prostate and age > or = 65 years. Patients were requred to have progressive disease despite androgen-deprivation therapy as determined by: (1) measurable lesions on cross-sectional imaging; (2) metastatic disease by radionucleotide bone imaging; or (3) elevated prostate specific antigen (PSA). Treatment cycles consisted of docetaxel 60 mg/m2 IV on day 1 and erlotinib 150 mg PO days 1-21. Patients with responding or stable disease after 9 cycles were eligible to continue on erlotinib alone as maintenance therapy. RESULTS: Characteristics of 22 patients enrolled included: median age 73.5 years (range, 65-80); median Karnofsky Performance Status 90 (range 70-100); median hemoglobin 12.1 g/dl (range, 10.0-14.3); median PSA 218.3 ng/ml (range, 9-5754). A median of 6 treatment cycles were delivered per patient (range 1-17). No objective responses were observed in 8 patients with measurable lesions (0%, 95% CI 0-31%). Bone scan improvement and PSA decline was seen in 1 patient (5%, 95% CI 0.1-25%). Five of 22 patients experienced > or = 50 % decline in PSA (23%, 95% CI 8-45%). Hematologic toxicity included grade 3 neutropenia in 9 patients and neutropenic fever in 2 patients. Common non-hematologic toxicities (> or = grade 3) included fatigue, anorexia, and diarrhea. CONCLUSION: Docetaxel/erlotinib can be delivered safely in elderly patients with AIPC. Anti-cancer disease activity appears generally comparable to docetaxel when used as monotherapy. Hematologic and non-hematologic toxicity may be increased over docetaxel monotherapy. Prospective randomized studies would be required to determine if the toxicity of docetaxel and erlotinib justifies its use in this setting.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Quinazolinas/administración & dosificación , Taxoides/administración & dosificación , Adenocarcinoma/mortalidad , Adenocarcinoma/secundario , Anciano , Anciano de 80 o más Años , Docetaxel , Clorhidrato de Erlotinib , Humanos , Masculino , Neoplasias de la Próstata/mortalidad , Calidad de Vida , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA