Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
JCI Insight ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106107

RESUMEN

Gas flow is fundamental for driving tidal ventilation and thus the speed of lung motion, but current bias flow settings to support the preterm lung after birth are without an evidence base. We aimed to determine the role of gas bias flow rates to generate positive pressure ventilation in initiating early lung injury pathways in the preterm lamb. Using slower speeds to inflate the lung during tidal ventilation (gas flow rates 4-6 L/min) did not impact lung mechanics, mechanical power or gas exchange compared to those currently used in clinical practice (8-10 L/min). Speed of pressure and volume change during inflation were faster with higher flow rates. Lower flow rates resulted in less bronchoalveolar fluid protein, better lung morphology and fewer detached epithelial cells. Overall, relative to unventilated fetal controls, there was greater protein change using 8-10 L/min, which was associated with enrichment of acute inflammatory and innate responses. Slowing the speed of lung motion by supporting the preterm lung from birth with lower flow rates than currently used clinically resulted in less lung injury without compromising tidal ventilation or gas exchange.

2.
Acta Biomater ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181177

RESUMEN

Decellularised extracellular matrix (dECM) produced by mesenchymal stromal cells (MSCs) is a promising biomaterial for improving the ex vivo expansion of MSCs. The dECMs are often deposited on high modulus surfaces such as tissue culture plastic or glass, and subsequent differentiation assays often bias towards osteogenesis. We tested the hypothesis that dECM deposited on substrates of varying modulus will produce cell culture environments that are tailored to promote the proliferation and/or lineage-specific differentiation of MSCs. dECM was produced on type I collagen-functionalised polyacrylamide hydrogels with discrete moduli (∼4, 10, and 40 kPa) or in a linear gradient of modulus that spans the same range, and the substrates were used as culture surfaces for MSCs. Fluorescence spectroscopy and mass spectrometry characterization revealed structural compositional changes in the dECM as a function of substrate modulus. Softer substrates (4 kPa) with dECM supported the largest number of MSCs after 7 days (∼1.6-fold increase compared to glass). Additionally, osteogenic differentiation was greatest on high modulus substrates (40 kPa and glass) with dECM. Nuclear translocation of YAP1 was observed on all surfaces with a modulus of 10 kPa or greater and may be a driver for the increased osteogenesis on the high modulus surfaces. These data demonstrate that dECM technology can be integrated with environmental parameters such as substrate modulus to improve/tailor MSC proliferation and differentiation during ex vivo culture. These results have potential impact in the improved expansion of MSCs for tailored therapeutic applications and in the development of advanced tissue engineering scaffolds. STATEMENT OF SIGNIFICANCE: Mesenchymal stromal cells (MSCs) are extensively used in tissue engineering and regenerative medicine due to their ability to proliferate, differentiate, and modulate the immune environment. Controlling MSC behavior is critical for advances in the field. Decellularized extracellular matrix (dECM) can maintain MSC properties in culture, increase their proliferation rate and capacity, and enhance their stimulated differentiation. Substrate stiffness is another key driver of cell function, and previous reports have primarily looked at dECM deposition and function on stiff substrates such as glass. Herein, we produce dECM on substrates of varying stiffness to create tailored environments that enhance desired MSC properties such as proliferation and differentiation. Additionally, we complete mechanistic studies including quantitative mass spec of the ECM to understand the biological function.

3.
Clin Sci (Lond) ; 138(15): 941-962, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39018488

RESUMEN

Atrial fibrillation (AF) remains challenging to prevent and treat. A key feature of AF is atrial enlargement. However, not all atrial enlargement progresses to AF. Atrial enlargement in response to physiological stimuli such as exercise is typically benign and reversible. Understanding the differences in atrial function and molecular profile underpinning pathological and physiological atrial remodelling will be critical for identifying new strategies for AF. The discovery of molecular mechanisms responsible for pathological and physiological ventricular hypertrophy has uncovered new drug targets for heart failure. Studies in the atria have been limited in comparison. Here, we characterised mouse atria from (1) a pathological model (cardiomyocyte-specific transgenic (Tg) that develops dilated cardiomyopathy [DCM] and AF due to reduced protective signalling [PI3K]; DCM-dnPI3K), and (2) a physiological model (cardiomyocyte-specific Tg with an enlarged heart due to increased insulin-like growth factor 1 receptor; IGF1R). Both models presented with an increase in atrial mass, but displayed distinct functional, cellular, histological and molecular phenotypes. Atrial enlargement in the DCM-dnPI3K Tg, but not IGF1R Tg, was associated with atrial dysfunction, fibrosis and a heart failure gene expression pattern. Atrial proteomics identified protein networks related to cardiac contractility, sarcomere assembly, metabolism, mitochondria, and extracellular matrix which were differentially regulated in the models; many co-identified in atrial proteomics data sets from human AF. In summary, physiological and pathological atrial enlargement are associated with distinct features, and the proteomic dataset provides a resource to study potential new regulators of atrial biology and function, drug targets and biomarkers for AF.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Atrios Cardíacos , Ratones Transgénicos , Miocitos Cardíacos , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/genética , Animales , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Modelos Animales de Enfermedad , Fibrosis , Ratones , Humanos , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología
4.
Cardiovasc Res ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879891

RESUMEN

AIMS: Formylpeptide receptors (FPRs) play a critical role in the regulation of inflammation, an important driver of hypertension-induced end-organ damage. We have previously reported that the biased FPR small-molecule agonist, compound17b (Cmpd17b), is cardioprotective against acute, severe inflammatory insults. Here, we reveal the first compelling evidence of the therapeutic potential of this novel FPR agonist against a longer-term, sustained inflammatory insult, i.e. hypertension-induced end-organ damage. The parallels between the murine and human hypertensive proteome were also investigated. METHODS AND RESULTS: The hypertensive response to angiotensin II (Ang II, 0.7 mg/kg/day, s.c.) was attenuated by Cmpd17b (50 mg/kg/day, i.p.). Impairments in cardiac and vascular function assessed via echocardiography were improved by Cmpd17b in hypertensive mice. This functional improvement was accompanied by reduced cardiac and aortic fibrosis and vascular calcification. Cmpd17b also attenuated Ang II-induced increased cardiac mitochondrial complex 2 respiration. Proteomic profiling of cardiac and aortic tissues and cells, using label-free nano-liquid chromatography with high-sensitivity mass spectrometry, detected and quantified ∼6000 proteins. We report hypertension-impacted protein clusters associated with dysregulation of inflammatory, mitochondrial, and calcium responses, as well as modified networks associated with cardiovascular remodelling, contractility, and structural/cytoskeletal organization. Cmpd17b attenuated hypertension-induced dysregulation of multiple proteins in mice, and of these, ∼110 proteins were identified as similarly dysregulated in humans suffering from adverse aortic remodelling and cardiac hypertrophy. CONCLUSION: We have demonstrated, for the first time, that the FPR agonist Cmpd17b powerfully limits hypertension-induced end-organ damage, consistent with proteome networks, supporting development of pro-resolution FPR-based therapeutics for treatment of systemic hypertension complications.

5.
Nanoscale ; 16(24): 11457-11479, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38856692

RESUMEN

Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.


Asunto(s)
Aptámeros de Nucleótidos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/uso terapéutico , Neoplasias/terapia , Neoplasias/metabolismo , Animales , Inmunoterapia , Comunicación Celular
6.
Circ Res ; 135(1): 198-221, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38900854

RESUMEN

From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.


Asunto(s)
Enfermedades Cardiovasculares , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Animales , Enfermedades Cardiovasculares/terapia
7.
Proteomics ; 24(11): e2300067, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570832

RESUMEN

Small extracellular vesicles (sEVs) are cell-derived vesicles evolving as important elements involved in all stages of cancers. sEVs bear unique protein signatures that may serve as biomarkers. Pancreatic cancer (PC) records a very poor survival rate owing to its late diagnosis and several cancer cell-derived proteins have been reported as candidate biomarkers. However, given the pivotal role played by stellate cells (PSCs, which produce the collagenous stroma in PC), it is essential to also assess PSC-sEV cargo in biomarker discovery. Thus, this study aimed to isolate and characterise sEVs from mouse PC cells and PSCs cultured alone or as co-cultures and performed proteomic profiling and pathway analysis. Proteomics confirmed the enrichment of specific markers in the sEVs compared to their cells of origin as well as the proteins that are known to express in each of the culture types. Most importantly, for the first time it was revealed that PSC-sEVs are enriched in proteins (including G6PI, PGAM1, ENO1, ENO3, and LDHA) that mediate pathways related to development of diabetes, such as glucose metabolism and gluconeogenesis revealing a potential role of PSCs in pancreatic cancer-related diabetes (PCRD). PCRD is now considered a harbinger of PC and further research will enable to identify the role of these components in PCRD and may develop as novel candidate biomarkers of PC.


Asunto(s)
Vesículas Extracelulares , Neoplasias Pancreáticas , Células Estrelladas Pancreáticas , Proteómica , Animales , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Ratones , Vesículas Extracelulares/metabolismo , Proteómica/métodos , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proteoma/análisis , Proteoma/metabolismo
9.
Proteomics ; 24(11): e2300058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470197

RESUMEN

Previously, we reported that human primary (SW480) and metastatic (SW620) colorectal (CRC) cells release three classes of membrane-encapsulated extracellular vesicles (EVs); midbody remnants (MBRs), exosomes (Exos), and microparticles (MPs). We reported that MBRs were molecularly distinct at the protein level. To gain further biochemical insights into MBRs, Exos, and MPs and their emerging role in CRC, we performed, and report here, for the first time, a comprehensive transcriptome and long noncoding RNA sequencing analysis and fusion gene identification of these three EV classes using the next-generation RNA sequencing technique. Differential transcript expression analysis revealed that MBRs have a distinct transcriptomic profile compared to Exos and MPs with a high enrichment of mitochondrial transcripts lncRNA/pseudogene transcripts that are predicted to bind to ribonucleoprotein complexes, spliceosome, and RNA/stress granule proteins. A salient finding from this study is a high enrichment of several fusion genes in MBRs compared to Exos, MPs, and cell lysates from their parental cells such as MSH2 (gene encoded DNA mismatch repair protein MSH2). This suggests potential EV-liquid biopsy targets for cancer detection. Importantly, the expression of cancer progression-related transcripts found in EV classes derived from SW480 (EGFR) and SW620 (MET and MACCA1) cell lines reflects their parental cell types. Our study is the report of RNA and fusion gene compositions within MBRs (including Exos and MPs) that could have an impact on EV functionality in cancer progression and detection using EV-based RNA/ fusion gene candidates for cancer biomarkers.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Perfilación de la Expresión Génica , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Exosomas/genética , Exosomas/metabolismo , Perfilación de la Expresión Génica/métodos , Línea Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Transcriptoma/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
Proteomics ; 24(11): e2300391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38556629

RESUMEN

Arterial thrombosis manifesting as heart attack and stroke is the leading cause of death worldwide. Platelets are central mediators of thrombosis that can be activated through multiple activation pathways. Platelet-derived extracellular vesicles (pEVs), also known as platelet-derived microparticles, are granular mixtures of membrane structures produced by platelets in response to various activating stimuli. Initial studies have attracted interest on how platelet agonists influence the composition of the pEV proteome. In the current study, we used physiological platelet agonists of varying potencies which reflect the microenvironments that platelets experience during thrombus formation: adenosine diphosphate, collagen, thrombin as well as a combination of thrombin/collagen to induce platelet activation and pEV generation. Proteomic profiling revealed that pEVs have an agonist-dependent altered proteome in comparison to their cells of origin, activated platelets. Furthermore, we found that various protein classes including those related to coagulation and complement (prothrombin, antithrombin, and plasminogen) and platelet activation (fibrinogen) are attributed to platelet EVs following agonist stimulation. This agonist-dependent altered proteome suggests that protein packaging is an active process that appears to occur without de novo protein synthesis. This study provides new information on the influence of physiological agonist stimuli on the biogenesis and proteome landscape of pEVs.


Asunto(s)
Plaquetas , Vesículas Extracelulares , Activación Plaquetaria , Proteoma , Proteómica , Trombina , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Humanos , Proteoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Trombina/farmacología , Trombina/metabolismo , Proteómica/métodos , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Colágeno/metabolismo
11.
Diabetes Obes Metab ; 26(5): 1731-1745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351663

RESUMEN

AIM: Acyl-coenzyme A dehydrogenase family member 10 (ACAD10) is a mitochondrial protein purported to be involved in the fatty acid oxidation pathway. Metformin is the most prescribed therapy for type 2 diabetes; however, its precise mechanisms of action(s) are still being uncovered. Upregulation of ACAD10 is a requirement for metformin's ability to inhibit growth in cancer cells and extend lifespan in Caenorhabditis elegans. However, it is unknown whether ACAD10 plays a role in metformin's metabolic actions. MATERIALS AND METHODS: We assessed the role for ACAD10 on whole-body metabolism and metformin action by generating ACAD10KO mice on a C57BL/6J background via CRISPR-Cas9 technology. In-depth metabolic phenotyping was conducted in both sexes on a normal chow and high fat-high sucrose diet. RESULTS: Compared with wildtype mice, we detected no difference in body composition, energy expenditure or glucose tolerance in male or female ACAD10KO mice, on a chow diet or high-fat, high-sucrose diet (p ≥ .05). Hepatic mitochondrial function and insulin signalling was not different between genotypes under basal or insulin-stimulated conditions (p ≥ .05). Glucose excursions following acute administration of metformin before a glucose tolerance test were not different between genotypes nor was body composition or energy expenditure altered after 4 weeks of daily metformin treatment (p ≥ .05). Despite the lack of a metabolic phenotype, liver lipidomic analysis suggests ACAD10 depletion influences the abundance of specific ceramide species containing very long chain fatty acids, while metformin treatment altered clusters of cholesterol ester, plasmalogen, phosphatidylcholine and ceramide species. CONCLUSIONS: Loss of ACAD10 does not alter whole-body metabolism or impact the acute or chronic metabolic actions of metformin in this model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Masculino , Femenino , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Metformina/farmacología , Glucosa/metabolismo , Insulina , Ceramidas , Sacarosa , Dieta Alta en Grasa/efectos adversos
12.
Proteomics ; 24(11): e2200145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38214697

RESUMEN

The ability of trophectodermal cells (outer layer of the embryo) to attach to the endometrial cells and subsequently invade the underlying matrix are critical stages of embryo implantation during successful pregnancy establishment. Extracellular vesicles (EVs) have been implicated in embryo-maternal crosstalk, capable of reprogramming endometrial cells towards a pro-implantation signature and phenotype. However, challenges associated with EV yield and direct loading of biomolecules limit their therapeutic potential. We have previously established generation of cell-derived nanovesicles (NVs) from human trophectodermal cells (hTSCs) and their capacity to reprogram endometrial cells to enhance adhesion and blastocyst outgrowth. Here, we employed a rapid NV loading strategy to encapsulate potent implantation molecules such as HB-EGF (NVHBEGF). We show these loaded NVs elicit EGFR-mediated effects in recipient endometrial cells, activating kinase phosphorylation sites that modulate their activity (AKT S124/129, MAPK1 T185/Y187), and downstream signalling pathways and processes (AKT signal transduction, GTPase activity). Importantly, they enhanced target cell attachment and invasion. The phosphoproteomics and proteomics approach highlight NVHBEGF-mediated short-term signalling patterns and long-term reprogramming capabilities on endometrial cells which functionally enhance trophectodermal-endometrial interactions. This proof-of-concept study demonstrates feasibility in enhancing the functional potency of NVs in the context of embryo implantation.


Asunto(s)
Vesículas Extracelulares , Factor de Crecimiento Similar a EGF de Unión a Heparina , Humanos , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Femenino , Vesículas Extracelulares/metabolismo , Endometrio/metabolismo , Endometrio/citología , Esferoides Celulares/metabolismo , Esferoides Celulares/citología , Trofoblastos/metabolismo , Trofoblastos/citología , Implantación del Embrión , Adhesión Celular , Transducción de Señal , Proteómica/métodos , Embarazo
13.
Proteomics ; : e2300269, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991474

RESUMEN

Gram-negative bacteria release outer membrane vesicles (OMVs) that contain cargo derived from their parent bacteria. Helicobacter pylori is a Gram-negative human pathogen that produces urease to increase the pH of the surrounding environment to facilitate colonization of the gastric mucosa. However, the effect of acidic growth conditions on the production and composition of H. pylori OMVs is unknown. In this study, we examined the production, composition, and proteome of H. pylori OMVs produced during acidic and neutral pH growth conditions. H. pylori growth in acidic conditions reduced the quantity and size of OMVs produced. Additionally, OMVs produced during acidic growth conditions had increased protein, DNA, and RNA cargo compared to OMVs produced during neutral conditions. Proteomic analysis comparing the proteomes of OMVs to their parent bacteria demonstrated significant differences in the enrichment of beta-lactamases and outer membrane proteins between bacteria and OMVs, supporting that differing growth conditions impacts OMV composition. We also identified differences in the enrichment of proteins between OMVs produced during different pH growth conditions. Overall, our findings reveal that growth of H. pylori at different pH levels is a factor that alters OMV proteomes, which may affect their subsequent functions.

14.
Proteomics ; : e2300211, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37786918

RESUMEN

The integration of robust single-pot, solid-phase-enhanced sample preparation with powerful liquid chromatography-tandem mass spectrometry (LC-MS/MS) is routinely used to define the extracellular vesicle (EV) proteome landscape and underlying biology. However, EV proteome studies are often limited by sample availability, requiring upscaling cell cultures or larger volumes of biofluids to generate sufficient materials. Here, we have refined data independent acquisition (DIA)-based MS analysis of EV proteome by optimizing both protein enzymatic digestion and chromatography gradient length (ranging from 15 to 44 min). Our short 15 min gradient length can reproducibly quantify 1168 (from as little as 500 pg of EV peptides) to 3882 proteins groups (from 50 ng peptides), including robust quantification of 22 core EV marker proteins. Compared to data-dependent acquisition, DIA achieved significantly greater EV proteome coverage and quantification of low abundant protein species. Moreover, we have achieved optimal magnetic bead-based sample preparation tailored to low quantities of EVs (0.5 to 1 µg protein) to obtain sufficient peptides for MS quantification of 1908-2340 protein groups. We demonstrate the power and robustness of our pipeline in obtaining sufficient EV proteomes granularity of different cell sources to ascertain known EV biology. This underscores the capacity of our optimised workflow to capture precise and comprehensive proteome of EVs, especially from ultra-low sample quantities (sub-nanogram), an important challenge in the field where obtaining in-depth proteome information is essential.

15.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L594-L603, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37727901

RESUMEN

Tidal ventilation is essential in supporting the transition to air-breathing at birth, but excessive tidal volume (VT) is an important factor in preterm lung injury. Few studies have assessed the impact of specific VT levels on injury development. Here, we used a lamb model of preterm birth to investigate the role of different levels of VT during positive pressure ventilation (PPV) in promoting aeration and initiating early lung injury pathways. VT was delivered as 1) 7 mL/kg throughout (VTstatic), 2) begun at 3 mL/kg and increased to a final VT of 7 mL/kg over 3 min (VTinc), or 3) commenced at 7 mL/kg, decreased to 3 mL/kg, and then returned to 7 mL/kg (VTalt). VT, inflating pressure, lung compliance, and aeration were similar in all groups from 4 min, as was postmortem histology and lung lavage protein concentration. However, transient decrease in VT in the VTalt group caused increased ventilation heterogeneity. Following TMT-based quantitative mass spectrometry proteomics, 1,610 proteins were identified in the lung. Threefold more proteins were significantly altered with VTalt compared with VTstatic or VTinc strategies. Gene set enrichment analysis identified VTalt specific enrichment of immune and angiogenesis pathways and VTstatic enrichment of metabolic processes. Our finding of comparable lung physiology and volutrauma across VT groups challenges the paradigm that there is a need to rapidly aerate the preterm lung at birth. Increased lung injury and ventilation heterogeneity were identified when initial VT was suddenly decreased during respiratory support at birth, further supporting the benefit of a gentle VT approach.NEW & NOTEWORTHY There is little evidence to guide the best tidal volume (VT) strategy at birth. In this study, comparable aeration, lung mechanics, and lung morphology were observed using static, incremental, and alternating VT strategies. However, transient reduction in VT was associated with ventilation heterogeneity and inflammation. Our results suggest that rapidly aerating the preterm lung may not be as clinically critical as previously thought, providing clinicians with reassurance that gently supporting the preterm lung maybe permissible at birth.

16.
Proteomics ; : e2300056, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698557

RESUMEN

Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6 h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells. NVs display similar biophysical traits (morphologically intact, spherical, 90-130 nm) to EVs, and are laden with hallmark players of implantation that include cell-matrix adhesion and extracellular matrix organisation proteins (ITGA2/V, ITGB1, MFGE8) and antioxidative regulators (PRDX1, SOD2). Functionally, NVs are readily taken up by low-receptive endometrial HEC1A cells and reprogram their proteome towards a receptive phenotype that support hTSC spheroid attachment. Moreover, a single dose treatment with NVs significantly enhanced adhesion and spreading of mouse embryo trophoblast on fibronectin matrix. Thus, we demonstrate the functional potential of NVs in enhancing embryo implantation and highlight their rapid and scalable generation, amenable to clinical utility.

17.
Proteomics ; : e2300057, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507836

RESUMEN

Cell-derived extracellular vesicles (EVs) are evolutionary-conserved secretory organelles that, based on their molecular composition, are important intercellular signaling regulators. At least three classes of circulating EVs are known based on mechanism of biogenesis: exosomes (sEVs/Exos), microparticles (lEVs/MPs), and shed midbody remnants (lEVs/sMB-Rs). sEVs/Exos are of endosomal pathway origin, microparticles (lEVs/MPs) from plasma membrane blebbing and shed midbody remnants (lEVs/sMB-Rs) arise from symmetric cytokinetic abscission. Here, we isolate sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs secreted from human isogenic primary (SW480) and metastatic (SW620) colorectal cancer (CRC) cell lines in milligram quantities for label-free MS/MS-based proteomic profiling. Purified EVs revealed selective composition packaging of exosomal protein markers in SW480/SW620-sEVs/Exos, metabolic enzymes in SW480/SW620-lEVs/MPs, while centralspindlin complex proteins, nucleoproteins, splicing factors, RNA granule proteins, translation-initiation factors, and mitochondrial proteins selectively traffic to SW480/SW620- lEVs/sMB-Rs. Collectively, we identify 39 human cancer-associated genes in EVs; 17 associated with SW480-EVs, 22 with SW620-EVs. We highlight oncogenic receptors/transporters selectively enriched in sEVs/Exos (EGFR/FAS in SW480-sEVs/Exos and MET, TGFBR2, ABCB1 in SW620-sEVs/Exos). Interestingly, MDK, STAT1, and TGM2 are selectively enriched in SW480-lEVs/sMB-Rs, and ADAM15 to SW620-lEVs/sMB-Rs. Our study reveals sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs have distinct protein signatures that open potential diagnostic avenues of distinct types of EVs for clinical utility.

18.
Cell Oncol (Dordr) ; 46(4): 909-931, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37014551

RESUMEN

PURPOSE: The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication. METHODS: Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. RESULTS: We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. CONCLUSIONS: Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Podosomas , Humanos , Glioblastoma/patología , Temozolomida/farmacología , Podosomas/metabolismo , Podosomas/patología , Proteómica
19.
Commun Biol ; 6(1): 265, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914713

RESUMEN

Atherosclerotic plaque rupture leading to myocardial infarction is a major global health burden. Applying the tandem stenosis (TS) mouse model, which distinctively exhibits the characteristics of human plaque instability/rupture, we use quantitative proteomics to understand and directly compare unstable and stable atherosclerosis. Our data highlight the disparate natures and define unique protein signatures of unstable and stable atherosclerosis. Key proteins and pathway networks are identified such as the innate immune system, and neutrophil degranulation. The latter includes calprotectin S100A8/A9, which we validate in mouse and human unstable plaques, and we demonstrate the plaque-stabilizing effects of its inhibition. Overall, we provide critical insights into the unique proteomic landscape of unstable atherosclerosis (as distinct from stable atherosclerosis and vascular tissue). We further establish the TS model as a reliable preclinical tool for the discovery and testing of plaque-stabilizing drugs. Finally, we provide a knowledge resource defining unstable atherosclerosis that will facilitate the identification and validation of long-sought-after therapeutic targets and drugs for plaque stabilization.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Animales , Ratones , Placa Aterosclerótica/tratamiento farmacológico , Proteómica , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Modelos Animales de Enfermedad
20.
Biomedicines ; 11(3)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36979766

RESUMEN

Pluripotent stem cells are key players in regenerative medicine. Embryonic pluripotent stem cells, despite their significant advantages, are associated with limitations such as their inadequate availability and the ethical dilemmas in their isolation and clinical use. The discovery of very small embryonic-like (VSEL) stem cells addressed the aforementioned limitations, but their isolation technique remains a challenge due to their small cell size and their efficiency in isolation. Here, we report a simplified and effective approach for the isolation of small pluripotent stem cells derived from human peripheral blood. Our approach results in a high yield of small blood stem cell (SBSC) population, which expresses pluripotent embryonic markers (e.g., Nanog, SSEA-3) and the Yamanaka factors. Further, a fraction of SBSCs also co-express hematopoietic markers (e.g., CD45 and CD90) and/or mesenchymal markers (e.g., CD29, CD105 and PTH1R), suggesting a mixed stem cell population. Finally, quantitative proteomic profiling reveals that SBSCs contain various stem cell markers (CD9, ITGA6, MAPK1, MTHFD1, STAT3, HSPB1, HSPA4), and Transcription reg complex factors (e.g., STAT5B, PDLIM1, ANXA2, ATF6, CAMK1). In conclusion, we present a novel, simplified and effective isolating process that yields an abundant population of small-sized cells with characteristics of pluripotency from human peripheral blood.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA