Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
2.
J Pharmacol Exp Ther ; 387(1): 4-14, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37164371

RESUMEN

Irritable bowel syndrome (IBS) and bladder pain syndrome/interstitial cystitis (BPS/IC) are comorbid visceral pain disorders seen commonly in women with unknown etiology and limited treatment options and can involve visceral organ cross-sensitization. Calcitonin gene-related peptide (CGRP) is a mediator of nociceptive processing and may serve as a target for therapy. In three rodent models, we employed a monoclonal anti-CGRP F(ab')2 to investigate the hypothesis that visceral organ cross-sensitization is mediated by abnormal CGRP signaling. Visceral organ cross-sensitization was induced in adult female rats via transurethral infusion of protamine sulfate (PS) into the urinary bladder or infusion into the colon of trinitrobenzene sulfonic acid (TNBS). Colonic sensitivity was assessed via the visceromotor response to colorectal distension (CRD). Bladder sensitivity was assessed as the frequency of abdominal withdrawal reflexes to von Frey filaments applied to the suprapubic region. PS- or TNBS-induced changes in colonic and bladder permeability were investigated in vitro via quantification of transepithelial electrical resistance (TEER). Peripheral administration of an anti-CGRP F(ab')2 inhibited PS-induced visceral pain behaviors and colon hyperpermeability. Similarly, TNBS-induced pain behaviors and colon and bladder hyperpermeability were attenuated by anti-CGRP F(ab')2 treatment. PS into the bladder or TNBS into the colon significantly increased the visceromotor response to CRD and abdominal withdrawal reflexes to suprapubic stimulation and decreased bladder and colon TEER. These findings suggest an important role of peripheral CGRP in visceral nociception and organ cross-sensitization and support the evaluation of CGRP as a therapeutic target for visceral pain in patients with IBS and/or BPS/IC. SIGNIFICANCE STATEMENT: A monoclonal antibody against calcitonin gene-related peptide (CGRP) was found to reduce concomitant colonic and bladder hypersensitivity and hyperpermeability. The results of this study suggest that CGRP-targeting antibodies, in addition to migraine prevention, may provide a novel treatment strategy for multiorgan abdominopelvic pain following injury or inflammation.


Asunto(s)
Síndrome del Colon Irritable , Dolor Visceral , Ratas , Femenino , Animales , Vejiga Urinaria , Péptido Relacionado con Gen de Calcitonina , Síndrome del Colon Irritable/tratamiento farmacológico , Dolor Visceral/tratamiento farmacológico , Ratas Sprague-Dawley , Colon , Analgésicos/farmacología , Analgésicos/uso terapéutico , Modelos Animales de Enfermedad
3.
Neurogastroenterol Motil ; 35(5): e14558, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36893055

RESUMEN

BACKGROUND: Women with a history of early life stress (ELS) have a higher risk of developing irritable bowel syndrome (IBS). In addition, chronic stress in adulthood can exacerbate IBS symptoms such as abdominal pain due to visceral hypersensitivity. We previously showed that sex and the predictability of ELS determine whether rats develop visceral hypersensitivity in adulthood. In female rats, unpredictable ELS confers vulnerability and results in visceral hypersensitivity, whereas predictable ELS induces resilience and does not induce visceral hypersensitivity in adulthood. However, this resilience is lost after exposure to chronic stress in adulthood leading to an exacerbation of visceral hypersensitivity. Evidence suggests that changes in histone acetylation at the promoter regions of glucocorticoid receptor (GR) and corticotrophin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) underlie stress-induced visceral hypersensitivity. Here, we aimed to investigate the role of histone acetylation in the CeA on visceral hypersensitivity in a two-hit model of ELS followed by chronic stress in adulthood. METHODS: Male and female neonatal rats were exposed to unpredictable, predictable ELS, or odor only (no stress control) from postnatal days 8 to 12. In adulthood, rats underwent stereotaxic implantation of indwelling cannulas. Rats were exposed to chronic water avoidance stress (WAS, 1 h/day for 7 days) or SHAM stress and received infusions of vehicle, the histone deacetylase inhibitor trichostatin A (TSA) or the histone acetyltransferase inhibitor garcinol (GAR) after each WAS session. 24 h after the final infusion, visceral sensitivity was assessed and the CeA was removed for molecular experiments. RESULTS: In the two-hit model (ELS + WAS), female rats previously exposed to predictable ELS, showed a significant reduction in histone 3 lysine 9 (H3K9) acetylation at the GR promoter and a significant increase in H3K9 acetylation at the CRF promoter. These epigenetic changes were associated with changes in GR and CRF mRNA expression in the CeA and an exacerbation of stress-induced visceral hypersensitivity in female animals. TSA infusions in the CeA attenuated the exacerbated stress-induced visceral hypersensitivity, whereas GAR infusions only partially ameliorated ELS+WAS induced visceral hypersensitivity. CONCLUSION: The two-hit model of ELS followed by WAS in adulthood revealed that epigenetic dysregulation occurs after exposure to stress in two important periods of life and contributes to the development of visceral hypersensitivity. These aberrant underlying epigenetic changes may explain the exacerbation of stress-induced abdominal pain in IBS patients.


Asunto(s)
Síndrome del Colon Irritable , Estrés Psicológico , Dolor Visceral , Animales , Femenino , Masculino , Ratas , Dolor Abdominal/genética , Hormona Liberadora de Corticotropina/metabolismo , Epigénesis Genética , Histonas/metabolismo , Síndrome del Colon Irritable/genética , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/genética , Dolor Visceral/genética
4.
Nat Rev Gastroenterol Hepatol ; 20(1): 5-25, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36168049

RESUMEN

The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options. Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease. The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome. Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.


Asunto(s)
Cannabinoides , Cannabis , Síndrome del Colon Irritable , Humanos , Endocannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/tratamiento farmacológico , Cannabinoides/uso terapéutico , Cannabinoides/metabolismo , Dolor Abdominal/tratamiento farmacológico , Dolor Abdominal/etiología , Cannabis/metabolismo
5.
J Pharmacol Exp Ther ; 383(1): 1, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36104085
6.
Neurogastroenterol Motil ; 34(9): e14377, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35411658

RESUMEN

The central pathophysiological mechanisms underlying irritable bowel syndrome (IBS), a female-predominant gastrointestinal disorder characterized by abdominal pain and abnormal bowel habits, remain poorly understood. IBS patients often report that chronic stress exacerbates their symptoms. Brain imaging studies have revealed that the amygdala, a stress-responsive brain region, of IBS patients is overactive when compared to healthy controls. Previously, we demonstrated that downregulation of the glucocorticoid receptor (GR) in the central nucleus of the amygdala (CeA) underlies stress-induced visceral hypersensitivity in female rats. In the current study, we aimed to evaluate in the CeA of female rats whether chronic water avoidance stress (WAS) alters DNA methylation of the GR exon 17 promoter region, a region homologous to the human GR promoter. As histone deacetylase (HDAC) inhibitors are able to change DNA methylation, we also evaluated whether administration of the HDAC inhibitor trichostatin A (TSA) directly into the CeA prevented WAS-induced increases in DNA methylation of the GR exon 17 promoter. We found that WAS increased overall and specific CpG methylation of the GR promoter in the CeA of female rats, which persisted for up to 28 days. Administration of the TSA directly into the CeA prevented these stress-induced changes of DNA methylation at the GR promoter. Our results suggest that, in females, changes in DNA methylation are involved in the regulation of GR expression in the CeA. These changes in DNA methylation may contribute to the central mechanisms responsible for stress-induced visceral hypersensitivity.


Asunto(s)
Núcleo Amigdalino Central , Síndrome del Colon Irritable , Animales , Metilación de ADN , Femenino , Inhibidores de Histona Desacetilasas , Humanos , Regiones Promotoras Genéticas , Ratas , Receptores de Glucocorticoides , Estrés Psicológico
8.
Am J Nucl Med Mol Imaging ; 11(5): 363-373, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754607

RESUMEN

The blood-brain barrier (BBB) is usually impermeable to several drugs, which hampers treatment of various brain-related diseases/disorders. There have been several approaches to open the BBB, including intracarotid infusion of hyperosmotic concentrations of arabinose, mannitol, oleic or linoleic acids, or alkylglycerols, intravenous infusion of bradykinin B2, administration of a fragment of the ZO toxin from vibrio cholera, targeting specific components of the tight junctions (e.g. claudin-5) with siRNA or novel peptidomimetic drugs, or the use of ultrasound with microbubbles. We propose the use of a low molecular weight (MW), nitrone-type compound, OKN-007, which can temporarily open up the BBB for 1-2 hours. Gadolinium (Gd)-based compounds assessed ranged in MW from 546 (Gd-DTPA) to 465 kDa (ß-galactosidase-Gd-DOTA). We also included an albumin-based CA (albumin-Gd-DTPA-biotin) for assessment, as well as an antibody (Ab) against a neuron-specific biomarker conjugated to Gd-DOTA (anti-EphB2-Gd-DOTA). For the anti-EphB2 (goat Ab)-Gd-DOTA assessment, we utilized an anti-goat Ab conjugated with horse radish peroxidase (HRP) for confirmation of the presence of the anti-EphB2-Gd-DOTA probe. In addition, a Cy5 labeled anti-EphB2 Ab was co-administered with the anti-EphB2-Gd-DOTA probe, and assessed ex vivo. This study demonstrates that OKN-007 may be able to temporarily open up the BBB to augment the delivery of various compounds ranging in MW from as small as ~550 to as large as ~470 kDa. This compound is an investigational new drug for glioblastoma (GBM) therapy in clinical trials. The translational capability for human use to augment the delivery of non-BBB-permeable drugs is extremely high.

9.
J Pharmacol Exp Ther ; 379(3): 270-279, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34620725

RESUMEN

Irritable bowel syndrome (IBS) is a brain-gut disorder characterized by abdominal pain and altered bowel habits. Although the etiology of IBS remains unclear, stress in adulthood or in early life has been shown to be a significant factor in the development of IBS symptomatology. Evidence suggests that aberrant calcitonin gene-related peptide (CGRP) signaling may be involved in afferent sensitization and visceral organ hypersensitivity. Here, we used a monoclonal anti-CGRP divalent antigen-binding fragment [F(ab')2] antibody to test the hypothesis that inhibition of peripheral CGRP signaling reverses colonic hypersensitivity induced by either chronic adult stress or early life stress. A cohort of adult male rats was exposed to repeated water avoidance stress. Additionally, a second cohort consisting of female rats was exposed to a female-specific neonatal odor-attachment learning paradigm of unpredictable early life stress. Colonic sensitivity was then assessed in adult animals via behavioral responses to colorectal distension (CRD). To analyze spinal nociceptive signaling in response to CRD, dorsal horn extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was measured via immunohistochemistry. Repeated psychologic stress in adulthood or unpredictable stress in early life induced colonic hypersensitivity and enhanced evoked ERK1/2 phosphorylation in the spinal cord after CRD in rats. These phenotypes were reversed by administration of a monoclonal anti-CGRP F(ab')2 fragment antibody. Stress-induced changes in visceral sensitivity and spinal nociceptive signaling were reversed by inhibition of peripheral CGRP signaling, which suggests a prominent role for CGRP in central sensitization and the development of stress-induced visceral hypersensitivity. SIGNIFICANCE STATEMENT: Targeting peripheral calcitonin gene-related peptide (CGRP) with a monoclonal anti-CGRP divalent antigen-binding fragment antibody reduced central sensitization and attenuated colonic hypersensitivity induced by either chronic adult stress or early life stress. CGRP-targeting antibodies are approved for migraine prevention, and the results of this study suggest that targeting CGRP may provide a novel treatment strategy for irritable bowel syndrome-related, stress-induced visceral pain.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Péptido Relacionado con Gen de Calcitonina/antagonistas & inhibidores , Péptido Relacionado con Gen de Calcitonina/metabolismo , Síndrome del Colon Irritable/metabolismo , Estrés Psicológico/metabolismo , Animales , Colon/efectos de los fármacos , Colon/metabolismo , Femenino , Humanos , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/psicología , Masculino , Embarazo , Ratas , Ratas Endogámicas F344 , Ratas Long-Evans , Ratas Sprague-Dawley , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/psicología
10.
Neurobiol Stress ; 15: 100386, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34584907

RESUMEN

Stress and anxiety contribute to the pathophysiology of irritable bowel syndrome (IBS), a female-predominant disorder of the gut-brain axis, characterized by abdominal pain due to heightened visceral sensitivity. In the current study, we aimed to evaluate in female rats whether epigenetic remodeling in the limbic brain, specifically in the central nucleus of the amygdala (CeA), is a contributing factor in stress-induced visceral hypersensitivity. Our results showed that 1 h exposure to water avoidance stress (WAS) for 7 consecutive days decreased histone acetylation at the GR promoter and increased histone acetylation at the CRH promoter in the CeA. Changes in histone acetylation were mediated by the histone deacetylase (HDAC) SIRT-6 and the histone acetyltransferase CBP, respectively. Administration of the HDAC inhibitor trichostatin A (TSA) into the CeA prevented stress-induced visceral hypersensitivity through blockade of SIRT-6 mediated histone acetylation at the GR promoter. In addition, HDAC inhibition within the CeA prevented stress-induced histone acetylation of the CRH promoter. Our results suggest that, in females, epigenetic modifications in the limbic brain regulating GR and CRH expression contribute to stress-induced visceral hypersensitivity and offer a potential explanation of how stress can trigger symptoms in IBS patients.

11.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G1081-G1092, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949202

RESUMEN

Stress can trigger symptoms in patients with irritable bowel syndrome (IBS). Previously we demonstrated that chronic psychological stress induced microglial remodeling in the central nucleus of amygdala (CeA) and contributed to the development of visceral hypersensitivity via synaptic engulfment. However, the specific signaling mechanisms that microglia depend upon to recognize target neurons to facilitate visceral pain remain unknown. Here, we test the hypothesis that the microglia in the CeA contribute to chronic stress-induced visceral hypersensitivity via complement C1q/C3-CR3 signaling-mediated synaptic remodeling. In male and female Fischer-344 rats, micropellets of corticosterone (CORT) or cholesterol (control) were stereotaxically implanted bilaterally onto the CeA. After 7 days, microglial C1q, complement receptor 3 (CR3) expression, and microglia-mediated synaptic engulfment were assessed via RNAscope, quantitative PCR, and immunofluorescence. The microglial inhibitor minocycline, CR3 antagonist neutrophil inhibitory factor (NIF), or vehicle were daily infused into the CeA following CORT implantations. Visceral sensitivity was assessed via a visceromotor response (VMR) to graded pressures of isobaric colorectal distension (CRD). Our results suggest that chronic exposure to elevated CORT in the CeA induced visceral hypersensitivity and amygdala microglial morphological remodeling. CORT increased microglial C1q and CR3 expression and increased microglia-mediated synaptic engulfment. Both groups of animals with minocycline or NIF infusions reversed microglia-mediated synaptic remodeling and attenuated CORT-induced visceral hypersensitivity. Our findings demonstrate that C1q/C3-CR3 signaling is critical for microglia-mediated synaptic remodeling in the CeA and contributes to CORT-induced visceral hypersensitivity.NEW & NOTEWORTHY Patients with irritable bowel syndrome (IBS) show altered amygdala activity. We showed previously that stress induces visceral hypersensitivity partially through microglia-modulated synaptic plasticity in the central nucleus of the amygdala (CeA). Our current data suggest that the C1q/C3-CR3 cascade initiates microglia-mediated synaptic remodeling in the CeA. Blocking C3-CR3 interaction attenuates stress-induced visceral hypersensitivity. These findings uncover a role of microglia-synapse signaling in the brain-gut regulation and support a future therapeutic target to treat visceral pain.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Complemento C1q/metabolismo , Complemento C3/metabolismo , Microglía/metabolismo , Plasticidad Neuronal/fisiología , Dolor Visceral/metabolismo , Animales , Colon/metabolismo , Corticosterona/sangre , Modelos Animales de Enfermedad , Femenino , Síndrome del Colon Irritable/metabolismo , Masculino , Percepción del Dolor/fisiología , Ratas , Ratas Endogámicas F344
12.
Pharmacol Res Perspect ; 9(1): e00709, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540486

RESUMEN

Few therapeutic options exist for treatment of IC/BPS. A novel high MW GAG biopolymer ("SuperGAG") was synthesized by controlled oligomerization of CS, purified by TFF and characterized by SEC-MALLS and 1H-NMR spectroscopy. The modified GAG biopolymer was tested in an OVX female rat model in which bladder permeability was induced by a 10-minute intravesicular treatment with dilute (1 mg/ml) protamine sulfate and measured by classical Ussing Chamber TEER measurements following treatment with SuperGAG, chondroitin sulfate, or saline. The effect on abrogating the abdominal pain response was assessed using von Frey filaments. The SuperGAG biopolymer was then investigated in a second, genetically modified mouse model (URO-MCP1) that increasingly is accepted as a model for IC/BPS. Permeability was induced with a brief exposure to a sub-noxious dose of LPS and was quantified using contrast-enhanced MRI (CE-MRI). The SuperGAG biopolymer restored impermeability to normal levels in the OVX rat model as measured by TEER in the Ussing chamber and reduced the abdominal pain response arising from induced permeability. Evaluation in the URO-MCP1 mouse model also showed restoration of bladder impermeability and showed the utility of CE-MRI imaging for evaluating the efficacy of agents to restore bladder impermeability. We conclude novel high MW SuperGAG biopolymers are effective in restoring urothelial impermeability and reducing pain produced by loss of the GAG layer on the urothelium. SuperGAG biopolymers could offer a novel and effective new therapy for IC/BPS, particularly if combined with MRI to assess the efficacy of the therapy.


Asunto(s)
Biopolímeros/uso terapéutico , Cistitis Intersticial/tratamiento farmacológico , Glicosaminoglicanos/uso terapéutico , Animales , Cistitis Intersticial/diagnóstico por imagen , Cistitis Intersticial/metabolismo , Femenino , Imagen por Resonancia Magnética , Ratones Transgénicos , Ovariectomía , Permeabilidad/efectos de los fármacos , Protaminas , Ratas Sprague-Dawley , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo
13.
Neurogastroenterol Motil ; 33(3): e14076, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33373484

RESUMEN

BACKGROUND: Psychological stress is a risk factor for irritable bowel syndrome, a functional gastrointestinal pain disorder featuring abnormal brain-gut connectivity. The guanylate cyclase-C (GC-C) agonist linaclotide has been shown to relieve abdominal pain in IBS-C and exhibits antinociceptive effects in rodent models of post-inflammatory visceral hypersensitivity. However, the role GC-C signaling plays in psychological stress-induced visceral hypersensitivity is unknown. Here, we test the hypothesis that GC-C agonism reverses stress-induced colonic hypersensitivity via inhibition of nociceptive afferent signaling resulting in normalization of stress-altered corticotropin-releasing factor (CRF) expression in brain regions involved in pain perception and modulation. METHODS: Adult female rats were exposed to water avoidance stress or sham stress for 10 days, and the effects of linaclotide on stress-induced changes in colonic sensitivity, corticolimbic phospho-extracellular signal-regulated kinase (pERK), and CRF expression were measured using a combination of behavioral assessments, immunohistochemistry, and qRT-PCR. KEY RESULTS: Stressed rats exhibited colonic hypersensitivity and elevated corticolimbic pERK on day 11, which was inhibited by linaclotide. qRT-PCR analysis revealed dysregulated CRF expression in the medial prefrontal cortex, paraventricular nucleus of the hypothalamus, and central nucleus of the amygdala on day 28. Dysregulated CRF expression was not affected by linaclotide treatment. CONCLUSIONS AND INFERENCES: Our results demonstrate that exposure to repeated stress induces chronic colonic hypersensitivity in conjunction with altered corticolimbic activation and CRF expression. GC-C agonism attenuated stress-induced colonic hypersensitivity and ERK phosphorylation, but had no effect on CRF expression, suggesting the analgesic effects of linaclotide occur independent of stress-driven CRF gene expression in corticolimbic circuitry.


Asunto(s)
Encéfalo/efectos de los fármacos , Colon/efectos de los fármacos , Hormona Liberadora de Corticotropina/genética , Agonistas de la Guanilato Ciclasa C/farmacología , Nocicepción/efectos de los fármacos , Péptidos/farmacología , Receptores de Enterotoxina/metabolismo , Estrés Psicológico/metabolismo , Animales , Encéfalo/metabolismo , Núcleo Amigdalino Central/efectos de los fármacos , Núcleo Amigdalino Central/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Colon/metabolismo , Hormona Liberadora de Corticotropina/efectos de los fármacos , Hormona Liberadora de Corticotropina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema Límbico/efectos de los fármacos , Sistema Límbico/metabolismo , Umbral del Dolor , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Estrés Psicológico/fisiopatología
15.
PLoS One ; 15(10): e0239282, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33095778

RESUMEN

OBJECTIVES: To determine if the URO-MCP-1 mouse model for bladder IC/BPS is associated with in vivo bladder hyper-permeability, as measured by contrast-enhanced MRI (CE-MRI), and assess whether molecular-targeted MRI (mt-MRI) can visualize in vivo claudin-2 expression as a result of bladder hyper-permeability. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic, painful condition of the bladder that affects primarily women. It is known that permeability plays a substantial role in IC/BPS. Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. Claudin-2 is a molecular marker that is associated with increased hyperpermeability in the urothelium. MATERIALS AND METHODS: CE-MRI was used to measure bladder hyper-permeability in the URO-MCP-1 mice. A claudin-2-specific mt-MRI probe was used to assess in vivo levels of claudin-2. The mt-MRI probe consists of an antibody against claudin-2 conjugated to albumin that had Gd-DTPA (gadolinium diethylenetriamine pentaacetate) and biotin attached. Verification of the presence of the mt-MRI probe was done by targeting the biotin moiety for the probe with streptavidin-horse radish peroxidase (SA-HRP). Trans-epithelial electrical resistance (TEER) was also used to assess bladder permeability. RESULTS: The URO-MCP-1 mouse model for IC/BPS was found to have a significant increase in bladder permeability, following liposaccharide (LPS) exposure, compared to saline-treated controls. mt-MRI- and histologically-detectable levels of the claudin-2 probe were found to increase with LPS -induced bladder urothelial hyper-permeability in the URO-MCP-1 IC mouse model. Levels of protein expression for claudin-2 were confirmed with immunohistochemistry and immunofluorescence imaging. Claudin-2 was also found to highly co-localize with zonula occlidens-1 (ZO-1), a tight junction protein. CONCLUSION: The combination of CE-MRI and TEER approaches were able to demonstrate hyper-permeability, a known feature associated with some IC/BPS patients, in the LPS-exposed URO-MCP-1 mouse model. This MRI approach could be clinically translated to establish which IC/BPS patients have bladder hyper-permeability and help determine therapeutic options. In addition, the in vivo molecular-targeted imaging approach can provide invaluable information to enhance our understanding associated with bladder urothelium hyper-permeability in IC/BPS patients, and perhaps be used to assist in developing further therapeutic strategies.


Asunto(s)
Claudina-2/metabolismo , Cistitis Intersticial/patología , Imagen por Resonancia Magnética/métodos , Sondas Moleculares/química , Vejiga Urinaria/fisiopatología , Animales , Anticuerpos/química , Anticuerpos/inmunología , Claudina-2/inmunología , Cistitis Intersticial/metabolismo , Modelos Animales de Enfermedad , Gadolinio DTPA/química , Inmunohistoquímica , Lipopolisacáridos/toxicidad , Ratones , Permeabilidad/efectos de los fármacos , Albúmina Sérica/química
16.
J Exp Pharmacol ; 12: 267-274, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801950

RESUMEN

PURPOSE: The anti-nociceptive properties of ghrelin have been demonstrated in alleviating inflammatory and neuropathic pain. Whether a ghrelin receptor-mediated mechanism attenuates visceral and somatic pain in the absence of active inflammation remains to be explored. Here, we investigate the efficacy of peripherally restricted (ipamorelin) and a globally active (HM01) selective ghrelin receptor agonist in an experimental model of non-inflammatory visceral hypersensitivity and somatic mechanical allodynia. MATERIALS AND METHODS: Visceral hypersensitivity was induced by dilute acetic acid (0.6%) infusion in the colon of rats in the absence of colonic epithelial inflammation. Ghrelin mimetics HM01 and ipamorelin were administered orally or intravenously, respectively. The ghrelin receptor antagonist H0900 was administered orally. Colonic sensitivity was assessed via a visceromotor behavioral response (VMR) quantified as the number of abdominal contractions in response to graded isobaric pressures (0-60 mmHg) of colorectal distension (CRD). Somatic mechanical allodynia was quantified by the number of ipsilateral paw withdrawals in response to a calibrated von Frey filament. RESULTS: Compared to vehicle controls, ghrelin mimetics HM01 and ipamorelin significantly attenuated colonic hypersensitivity and somatic allodynia. The anti-nociceptive effects of the ghrelin mimetics were blocked after administration of the ghrelin receptor antagonist H0900. CONCLUSION: We have shown that ghrelin receptor-mediated mechanisms are involved in visceral and somatic hypersensitivity in the absence of active colonic inflammation. Furthermore, visceral and somatic hypersensitivity could be attenuated by a peripherally restricted ghrelin mimetic. These results highlight a potential novel approach for treating acute visceral and somatic pain by ghrelin mimetics.

17.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G391-G399, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32755304

RESUMEN

Neurogastroenterology refers to the study of the extrinsic and intrinsic nervous system circuits controlling the gastrointestinal (GI) tract. Over the past 5-10 yr there has been an explosion in novel methodologies, technologies and approaches that offer great promise to advance our understanding of the basic mechanisms underlying GI function in health and disease. This review focuses on the use of optogenetics combined with electrophysiology in the field of neurogastroenterology. We discuss how these technologies and tools are currently being used to explore the brain-gut axis and debate the future research potential and limitations of these techniques. Taken together, we consider that the use of these technologies will enable researchers to answer important questions in neurogastroenterology through fundamental research. The answers to those questions will shorten the path from basic discovery to new treatments for patient populations with disorders of the brain-gut axis affecting the GI tract such as irritable bowel syndrome (IBS), functional dyspepsia, achalasia, and delayed gastric emptying.


Asunto(s)
Gastroenterología/métodos , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Neurología/métodos , Optogenética/métodos , Animales , Sistema Nervioso Entérico , Gastroenterología/tendencias , Humanos , Síndrome del Colon Irritable/fisiopatología , Vías Nerviosas/fisiología , Neurología/tendencias
18.
Cell Mol Gastroenterol Hepatol ; 10(3): 527-543, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32408032

RESUMEN

BACKGROUND & AIMS: Psychological stress is a trigger for the development of irritable bowel syndrome and associated symptoms including abdominal pain. Although irritable bowel syndrome patients show increased activation in the limbic brain, including the amygdala, the underlying molecular and cellular mechanisms regulating visceral nociception in the central nervous system are incompletely understood. In a rodent model of chronic stress, we explored the role of microglia in the central nucleus of the amygdala (CeA) in controlling visceral sensitivity. Microglia are activated by environmental challenges such as stress, and are able to modify neuronal activity via synaptic remodeling and inflammatory cytokine release. Inflammatory gene expression and microglial activity are regulated negatively by nuclear glucocorticoid receptors (GR), which are suppressed by the stress-activated pain mediator p38 mitogen-activated protein kinases (MAPK). METHODS: Fisher-344 male rats were exposed to water avoidance stress (WAS) for 1 hour per day for 7 days. Microglia morphology and the expression of phospho-p38 MAPK and GR were analyzed via immunofluorescence. Microglia-mediated synaptic remodeling was investigated by quantifying the number of postsynaptic density protein 95-positive puncta. Cytokine expression levels in the CeA were assessed via quantitative polymerase chain reaction and a Luminex assay (Bio-Rad, Hercules, CA). Stereotaxic infusion into the CeA of minocycline to inhibit, or fractalkine to activate, microglia was followed by colonic sensitivity measurement via a visceromotor behavioral response to isobaric graded pressures of tonic colorectal distension. RESULTS: WAS induced microglial deramification in the CeA. Moreover, WAS induced a 3-fold increase in the expression of phospho-p38 and decreased the ratio of nuclear GR in the microglia. The number of microglia-engulfed postsynaptic density protein 95-positive puncta in the CeA was increased 3-fold by WAS, while cytokine levels were unchanged. WAS-induced changes in microglial morphology, microglia-mediated synaptic engulfment in the CeA, and visceral hypersensitivity were reversed by minocycline whereas in stress-naïve rats, fractalkine induced microglial deramification and visceral hypersensitivity. CONCLUSIONS: Our data show that chronic stress induces visceral hypersensitivity in male rats and is associated with microglial p38 MAPK activation, GR dysfunction, and neuronal remodeling in the CeA.


Asunto(s)
Núcleo Amigdalino Central/inmunología , Síndrome del Colon Irritable/inmunología , Microglía/inmunología , Estrés Psicológico/complicaciones , Dolor Visceral/inmunología , Animales , Núcleo Amigdalino Central/citología , Núcleo Amigdalino Central/efectos de los fármacos , Núcleo Amigdalino Central/patología , Quimiocina CX3CL1/administración & dosificación , Modelos Animales de Enfermedad , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/inmunología , Masculino , Microglía/efectos de los fármacos , Microglía/patología , Minociclina/administración & dosificación , Plasticidad Neuronal/inmunología , Ratas , Receptores de Glucocorticoides/metabolismo , Técnicas Estereotáxicas , Estrés Psicológico/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Am J Nucl Med Mol Imaging ; 10(1): 57-65, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211219

RESUMEN

The objective was to investigate if some of the key molecular players associated with bladder hyper-permeability in interstitial cystitis/bladder pain syndrome (IC/BPS) could be visualized with molecularly-targeted magnetic resonance imaging (mt-MRI) in vivo. IC/BPS is a chronic, painful condition of the bladder that affects primarily women. It has been demonstrated over the past several decades that permeability plays a substantial role in IC/BPS. There are several key molecular markers that have been associated with permeability, including glycolsaminoglycan (GAG), biglycan, chondroitin sulfate, decorin, E-cadherin, keratin 20, uroplakin, vascular endothelial growth factor receptor 1 (VEGF-R1), claudin-2 and zonula occludens-1 (ZO-1). We used in vivo molecularly-targeted MRI (mt-MRI) to assess specific urothelial biomarkers (decorin, VEGF-R1, and claudin-2) associated with bladder hyper-permeability in a protamine sulfate (PS)-induced rat model. The mt-MRI probes consisted of an antibody against either VEGF-R1, decorin or claudin-2 conjugated to albumin that had also Gd-DTPA (gadolinium diethylene triamine penta acetic acid) and biotin attached. mt-MRI- and histologically-detectable levels of decorin and VEGF-R1 were both found to decrease following PS-induced bladder urothelial hyper-permeability, whereas claudin-2, was found to increase in the rat PS model. Verification of the presence of the mt-MRI probes were done by targeting the biotin moiety for each respective probe with streptavidin-hose radish peroxidase (HRP). Levels of protein expression for VEGF-R1, decorin and claudin-2 were confirmed with immunohistochemistry. In vivo molecularly-targeted MRI (mt-MRI) was found to successfully detect alterations in the expression of decorin, VEGFR1 and claudin-2 in a PS-induced rat bladder permeability model. This in vivo molecularly-targeted imaging approach has the potential to provide invaluable information to enhance our understanding of bladder urothelium hyper-permeability in IC/BPS patients, and perhaps be used to assist in developing novel therapeutic strategies.

20.
Neurogastroenterol Motil ; 32(6): e13826, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32084303

RESUMEN

BACKGROUND: Cognitive behavioral therapy (CBT) improves quality of life of patients with irritable bowel syndrome (IBS), a disorder characterized by chronic visceral pain and abnormal bowel habits. Whether CBT can actually improve visceral pain in IBS patients is still unknown. The aim of this study is to evaluate whether environment enrichment (EE), the animal analog of CBT, can prevent stress-induced viscero-somatic hypersensitivity through changes in glucocorticoid receptor (GR) signaling within the central nucleus of the amygdala (CeA). METHODS: Rats were housed in either standard housing (SH) or EE for 7 days before and during daily water avoidance stress (WAS) exposure (1-h/d for 7 days). In the first cohort, visceral and somatic sensitivity were assessed via visceromotor response to colorectal distention and von Frey Anesthesiometer 24 hous and 21 days after WAS. In another cohort, the CeA was isolated for GR mRNA quantification. KEY RESULTS: Environment enrichment for 7 days before and during the 7 days of WAS persistently attenuated visceral and somatic hypersensitivity when compared to rats placed in SH. Environment enrichment exposure also prevented the WAS-induced decrease in GR expression in the CeA. CONCLUSION & INFERENCES: Pre-exposure to short-term EE prevents the stress-induced downregulation of GR, and inhibits visceral and somatic hypersensitivity induced by chronic stress. These results suggest that a positive environment can ameliorate stress-induced pathology and provide a non-pharmacological therapeutic option for disorders such as IBS.


Asunto(s)
Núcleo Amigdalino Central/metabolismo , Ambiente , Síndrome del Colon Irritable/fisiopatología , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/fisiopatología , Animales , Modelos Animales de Enfermedad , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/metabolismo , Masculino , Dolor/complicaciones , Ratas Endogámicas F344 , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Dolor Visceral/complicaciones , Dolor Visceral/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA