Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38539879

RESUMEN

Metal-catalyzed lipid oxidation is a major factor in food waste, as it reduces shelf life. Addressing this issue, our study investigates the potential of hydrolysates derived from potato protein, a by-product of potato starch production, as metal-chelating antioxidants. Through sequential enzymatic hydrolysis using alcalase or trypsin combined with Flavourzyme, we produced various hydrolysates, which were then fractionated using ultrafiltration. Using a combination of peptidomics and bioinformatics, we predicted the presence of metal-chelating and free radical-scavenging peptides across all hydrolysate fractions, with a trend indicating a higher content of antioxidant peptides in lower molecular weight fractions. To validate these predictions, we utilized surface plasmon resonance (SPR) and a 9-day emulsion storage experiment. While SPR demonstrated potential in identifying antioxidant activity, it faced challenges in differentiating between hydrolysate fractions due to significant standard errors. In the storage experiment, all hydrolysates showed lipid oxidation inhibition, though not as effectively as ethylenediaminetetraacetic acid (EDTA). Remarkably, one fraction (AF13) was not significantly different (p < 0.05) from EDTA in suppressing hexanal formation. These results highlight SPR and peptidomics/bioinformatics as promising yet limited methods for antioxidant screening. Importantly, this study reveals the potential of potato protein hydrolysates as antioxidants in food products, warranting further research.

2.
Comput Struct Biotechnol J ; 21: 3715-3727, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560124

RESUMEN

Accurate and absolute quantification of peptides in complex mixtures using quantitative mass spectrometry (MS)-based methods requires foreground knowledge and isotopically labeled standards, thereby increasing analytical expenses, time consumption, and labor, thus limiting the number of peptides that can be accurately quantified. This originates from differential ionization efficiency between peptides and thus, understanding the physicochemical properties that influence the ionization and response in MS analysis is essential for developing less restrictive label-free quantitative methods. Here, we used equimolar peptide pool repository data to develop a deep learning model capable of identifying amino acids influencing the MS1 response. By using an encoder-decoder with an attention mechanism and correlating attention weights with amino acid physicochemical properties, we obtain insight on properties governing the peptide-level MS1 response within the datasets. While the problem cannot be described by one single set of amino acids and properties, distinct patterns were reproducibly obtained. Properties are grouped in three main categories related to peptide hydrophobicity, charge, and structural propensities. Moreover, our model can predict MS1 intensity output under defined conditions based solely on peptide sequence input. Using a refined training dataset, the model predicted log-transformed peptide MS1 intensities with an average error of 9.7 ± 0.5% based on 5-fold cross validation, and outperformed random forest and ridge regression models on both log-transformed and real scale data. This work demonstrates how deep learning can facilitate identification of physicochemical properties influencing peptide MS1 responses, but also illustrates how sequence-based response prediction and label-free peptide-level quantification may impact future workflows within quantitative proteomics.

3.
Food Chem ; 426: 136498, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295051

RESUMEN

Bioinformatics tools were used to predict radical scavenging and metal chelating activities of peptides derived from abundant potato, seaweed, microbial, and spinach proteins. The antioxidant activity was evaluated in 5% oil-in-water emulsions (pH4) and best-performing peptides were tested in mayonnaise and compared with EDTA. Emulsion physical stability was intact. The peptide DDDNLVLPEVYDQD showed the highest protection against oxidation in both emulsions by retarding the formation of oxidation products and depletion of tocopherols during storage, but it was less efficient than EDTA when evaluated in mayonnaise. In low-fat emulsions, formation of hydroperoxides was reduced 4-folds after 5 days compared to control. The concentration effect of the peptide was confirmed in mayonnaise at the EDTA equimolar concentration. The second-best performing peptides were NNKWVPCLEFETEHGFVYREHH in emulsion and AGDWLIGDR in mayonnaise. In general, the peptide efficacy was higher in low-fat emulsions. Results demonstrated that peptide negative net charge was important for chelating activity.


Asunto(s)
Antioxidantes , Aceites de Pescado , Emulsiones , Ácido Edético , Agua , Oxidación-Reducción , Péptidos , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA