Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Elife ; 112022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36259537

RESUMEN

While leukemic cells are susceptible to various therapeutic insults, residence in the bone marrow microenvironment typically confers protection from a wide range of drugs. Thus, understanding the unique molecular changes elicited by the marrow is of critical importance toward improving therapeutic outcomes. In this study, we demonstrate that aberrant activation of oxidative phosphorylation serves to induce therapeutic resistance in FLT3 mutant human AML cells challenged with FLT3 inhibitor drugs. Importantly, our findings show that AML cells are protected from apoptosis following FLT3 inhibition due to marrow-mediated activation of ATM, which in turn upregulates oxidative phosphorylation via mTOR signaling. mTOR is required for the bone marrow stroma-dependent maintenance of protein translation, with selective polysome enrichment of oxidative phosphorylation transcripts, despite FLT3 inhibition. To investigate the therapeutic significance of this finding, we tested the mTOR inhibitor everolimus in combination with the FLT3 inhibitor quizartinib in primary human AML xenograft models. While marrow resident AML cells were highly resistant to quizartinib alone, the addition of everolimus induced profound reduction in tumor burden and prevented relapse. Taken together, these data provide a novel mechanistic understanding of marrow-based therapeutic resistance and a promising strategy for improved treatment of FLT3 mutant AML patients.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Fosforilación Oxidativa , Everolimus/farmacología , Everolimus/uso terapéutico , Leucemia Mieloide Aguda/patología , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Tirosina Quinasa 3 Similar a fms/metabolismo , Línea Celular Tumoral , Fosforilación , Mutación , Microambiente Tumoral
2.
Clin Cancer Res ; 25(13): 4079-4090, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30940653

RESUMEN

PURPOSE: Acute myeloid leukemia (AML) is a hematologic malignancy characterized by the accumulation of immature myeloid precursor cells. AML is poorly responsive to conventional chemotherapy and a diagnosis of AML is usually fatal. More effective and less toxic forms of therapy are desperately needed. AML cells are known to be highly dependent on the amino acid glutamine for their survival. These studies were directed at determining the effects of glutaminase inhibition on metabolism in AML and identifying general weaknesses that can be exploited therapeutically. EXPERIMENTAL DESIGN: AML cancer cell lines, primary AML cells, and mouse models of AML and acute lymphoblastic leukemia (ALL) were utilized. RESULTS: We show that blocking glutamine metabolism through the use of a glutaminase inhibitor (CB-839) significantly impairs antioxidant glutathione production in multiple types of AML, resulting in accretion of mitochondrial reactive oxygen species (mitoROS) and apoptotic cell death. Moreover, glutaminase inhibition makes AML cells susceptible to adjuvant drugs that further perturb mitochondrial redox state, such as arsenic trioxide (ATO) and homoharringtonine (HHT). Indeed, the combination of ATO or HHT with CB-839 exacerbates mitoROS and apoptosis, and leads to more complete cell death in AML cell lines, primary AML patient samples, and in vivo using mouse models of AML. In addition, these redox-targeted combination therapies are effective in eradicating ALL cells in vitro and in vivo. CONCLUSIONS: Targeting glutamine metabolism in combination with drugs that perturb mitochondrial redox state represents an effective and potentially widely applicable therapeutic strategy for treating multiple types of leukemia.


Asunto(s)
Antineoplásicos/farmacología , Metabolismo Energético/efectos de los fármacos , Glutamina/metabolismo , Leucemia/metabolismo , Oxidación-Reducción/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Leucemia/tratamiento farmacológico , Leucemia/patología , Ratones , Ratones Transgénicos , Terapia Molecular Dirigida/métodos , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Exp Hematol ; 58: 52-58, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28947392

RESUMEN

Acute myeloid leukemia (AML) is a blood cancer that is poorly responsive to conventional cytotoxic chemotherapy and a diagnosis of AML is usually fatal. More effective and better-tolerated therapies for AML are desperately needed. Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are one of the most frequently observed genetic defects in AML. FLT3 inhibitors have shown impressive anti-leukemic activity in clinical trials; however, sustained remissions using these inhibitors as monotherapy have not been achieved. Our previous studies have implicated impaired glutamine metabolism in response to FLT3 inhibitors as a dominant factor causing AML cell death. In this study, we have employed metabolic flux analysis to examine the effects of FLT3 inhibition on glutamine utilization in FLT3-mutated AML cells using stable isotope tracers. We found that the FLT3 inhibitor AC220 inhibited glutamine flux into the antioxidant factor glutathione profoundly due to defective glutamine import. We also found that the glutaminase inhibitor CB-839 similarly impaired glutathione production by effectively blocking flux of glutamine into glutamate. Moreover, the combination of AC220 with CB-839 synergized to deplete glutathione, induce mitochondrial reactive oxygen species, and cause loss of viability through apoptotic cell death. In vivo, glutaminase inhibition with CB-839 facilitated leukemic cell elimination by AC220 and improved survival significantly in a patient-derived xenograft AML mouse model. Therefore, targeting glutaminase in combination with FLT3 may represent an effective therapeutic strategy for improving treatment of FLT3-mutated AML.


Asunto(s)
Bencenoacetamidas/farmacología , Benzotiazoles/farmacología , Glutaminasa , Leucemia Mieloide Aguda , Compuestos de Fenilurea/farmacología , Tiadiazoles/farmacología , Tirosina Quinasa 3 Similar a fms , Animales , Línea Celular Tumoral , Femenino , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/genética , Glutamina/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(43): E6669-E6678, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791036

RESUMEN

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Resistencia a Antineoplásicos/genética , Regulación Leucémica de la Expresión Génica , Glucosafosfato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Tirosina Quinasa 3 Similar a fms/genética , Animales , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Benzotiazoles/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quimioterapia Combinada , Femenino , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Hidrazinas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Ratones Endogámicos NOD , Persona de Mediana Edad , Oxidación-Reducción , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/metabolismo
5.
Sensors (Basel) ; 15(3): 5474-503, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25751081

RESUMEN

The Wireless Sensor Network similarity search problem has received considerable research attention due to sensor hardware imprecision and environmental parameter variations. Most of the state-of-the-art distributed data centric storage (DCS) schemes lack optimization for similarity queries of events. In this paper, a DCS scheme with metric based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector distance index, called iDistance, in order to transform the issue of similarity searching into the problem of an interval search in one dimension. In addition, a sector based distance routing algorithm is used to efficiently route messages. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries.

6.
Clin Cancer Res ; 21(6): 1360-72, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25547679

RESUMEN

PURPOSE: Although tyrosine kinase inhibitors (TKI) can be effective therapies for leukemia, they fail to fully eliminate leukemic cells and achieve durable remissions for many patients with advanced BCR-ABL(+) leukemias or acute myelogenous leukemia (AML). Through a large-scale synthetic lethal RNAi screen, we identified pyruvate dehydrogenase, the limiting enzyme for pyruvate entry into the mitochondrial tricarboxylic acid cycle, as critical for the survival of chronic myelogenous leukemia (CML) cells upon BCR-ABL inhibition. Here, we examined the role of mitochondrial metabolism in the survival of Ph(+) leukemia and AML upon TK inhibition. EXPERIMENTAL DESIGN: Ph(+) cancer cell lines, AML cell lines, leukemia xenografts, cord blood, and patient samples were examined. RESULTS: We showed that the mitochondrial ATP-synthase inhibitor oligomycin-A greatly sensitized leukemia cells to TKI in vitro. Surprisingly, oligomycin-A sensitized leukemia cells to BCR-ABL inhibition at concentrations of 100- to 1,000-fold below those required for inhibition of respiration. Oligomycin-A treatment rapidly led to mitochondrial membrane depolarization and reduced ATP levels, and promoted superoxide production and leukemia cell apoptosis when combined with TKI. Importantly, oligomycin-A enhanced elimination of BCR-ABL(+) leukemia cells by TKI in a mouse model and in primary blast crisis CML samples. Moreover, oligomycin-A also greatly potentiated the elimination of FLT3-dependent AML cells when combined with an FLT3 TKI, both in vitro and in vivo. CONCLUSIONS: TKI therapy in leukemia cells creates a novel metabolic state that is highly sensitive to particular mitochondrial perturbations. Targeting mitochondrial metabolism as an adjuvant therapy could therefore improve therapeutic responses to TKI for patients with BCR-ABL(+) and FLT3(ITD) leukemias.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Oligomicinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Tirosina Quinasa 3 Similar a fms/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/genética , Modelos Animales de Enfermedad , Femenino , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacología , Cetona Oxidorreductasas/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño , Superóxidos/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo
7.
Am J Hematol ; 89(9): 896-903, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24891015

RESUMEN

Treatment of BCR-ABL1(+) leukemia has been revolutionized with the development of tyrosine kinase inhibitors. However, patients with BCR-ABL1(+) acute lymphoblastic leukemia and subsets of patients with chronic myeloid leukemia are at high risk of relapse despite kinase inhibition therapy, necessitating novel treatment strategies. We previously reported synthetic lethality in BCR-ABL1(+) leukemia cells by blocking both calcineurin/NFAT signaling and BCR-ABL1, independent of drug efflux inhibition by cyclosporine. Here, using RNA-interference we confirm that calcineurin inhibition sensitizes BCR-ABL1(+) cells to tyrosine kinase inhibition in vitro. However, when we performed pharmacokinetic and pharmacodynamic studies of dasatinib and cyclosporine in mice, we found that co-administration of cyclosporine increases peak concentrations and the area under the curve of dasatinib, which contributes to the enhanced disease control. We also report the clinical experience of two subjects in whom we observed more hematopoietic toxicity than expected while enrolled in a Phase Ib trial designed to assess the safety and tolerability of adding cyclosporine to dasatinib in humans. Thus, the anti-leukemia benefit of co-administration of cyclosporine and dasatinib is mechanistically pleiotropic, but may not be tolerable, at least as administered in this trial. These data highlight some of the challenges associated with combining targeted agents to treat leukemia.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Inhibidores de la Calcineurina , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Adulto , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Línea Celular Tumoral , Ciclosporina/efectos adversos , Ciclosporina/farmacocinética , Ciclosporina/uso terapéutico , Dasatinib , Sinergismo Farmacológico , Femenino , Citometría de Flujo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/efectos adversos , Pirimidinas/farmacocinética , Pirimidinas/uso terapéutico , Tiazoles/efectos adversos , Tiazoles/farmacocinética , Tiazoles/uso terapéutico , Resultado del Tratamiento
8.
Clin Cancer Res ; 19(15): 4149-62, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23757356

RESUMEN

PURPOSE: The mitogen-activated protein kinase (MAPK) pathway is a crucial regulator of cell proliferation, survival, and resistance to apoptosis. MEK inhibitors are being explored as a treatment option for patients with KRAS-mutant colorectal cancer who are not candidates for EGFR-directed therapies. Initial clinical results of MEK inhibitors have yielded limited single-agent activity in colorectal cancer, indicating that rational combination strategies are needed. EXPERIMENTAL DESIGN: In this study, we conducted unbiased gene set enrichment analysis and synthetic lethality screens with selumetinib, which identified the noncanonical Wnt/Ca++ signaling pathway as a potential mediator of resistance to the MEK1/2 inhibitor selumetinib. To test this, we used shRNA constructs against relevant WNT receptors and ligands resulting in increased responsiveness to selumetinib in colorectal cancer cell lines. Further, we evaluated the rational combination of selumetinib and WNT pathway modulators and showed synergistic antiproliferative effects in in vitro and in vivo models of colorectal cancer. RESULTS: Importantly, this combination not only showed tumor growth inhibition but also tumor regression in the more clinically relevant patient-derived tumor explant (PDTX) models of colorectal cancer. In mechanistic studies, we observed a trend toward increased markers of apoptosis in response to the combination of MEK and WntCa(++) inhibitors, which may explain the observed synergistic antitumor effects. CONCLUSIONS: These results strengthen the hypothesis that targeting both the MEK and Wnt pathways may be a clinically effective rational combination strategy for patients with metastatic colorectal cancer.


Asunto(s)
Bencimidazoles/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Ciclosporina/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Apoptosis , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/genética
9.
Proc Natl Acad Sci U S A ; 110(3): 978-83, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277542

RESUMEN

The oncogenic transcription factor c-Myc causes transformation and tumorigenesis, but it can also induce apoptotic cell death. Although tumor suppressors are necessary for c-Myc to induce apoptosis, the pathways and mechanisms are unclear. To further understand how c-Myc switches from an oncogenic protein to an apoptotic protein, we examined the mechanism of p53-independent c-Myc-induced apoptosis. We show that the tumor suppressor protein ARF mediates this switch by inhibiting ubiquitylation of the c-Myc transcriptional domain (TD). Whereas TD ubiquitylation is critical for c-Myc canonical transcriptional activity and transformation, inhibition of ubiquitylation leads to the induction of the noncanonical c-Myc target gene, Egr1, which is essential for efficient c-Myc-induced p53-independent apoptosis. ARF inhibits the interaction of c-Myc with the E3 ubiquitin ligase Skp2. Overexpression of Skp2, which occurs in many human tumors, inhibits the recruitment of ARF to the Egr1 promoter, leading to inhibition of c-Myc-induced apoptosis. Therapeutic strategies could be developed to activate this intrinsic apoptotic activity of c-Myc to inhibit tumorigenesis.


Asunto(s)
Apoptosis/fisiología , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sustitución de Aminoácidos , Animales , Apoptosis/genética , Unión Competitiva , Transformación Celular Neoplásica , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Técnicas de Inactivación de Genes , Genes myc , Células HeLa , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transcripción Genética , Ubiquitinación
10.
Immunol Res ; 55(1-3): 100-15, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22941562

RESUMEN

Despite great advances in our understanding of the driving events involved in malignant transformation, only a small number of oncogenic drivers have been targeted and translated into tangible clinical benefit. Moreover, even when a targeted therapy can be shown to effectively inhibit an oncogenic driver, leading to cancer remission, disease persistence and/or relapse is typically inevitable. Reemergence of the cancer can result from either intrinsic or acquired resistance mechanisms that result in failure to eliminate all cancer cells. Intrinsic mechanisms of resistance include tumor heterogeneity and pathways that can compensate for the inhibition of the oncogenic driver. Acquired resistance mechanisms include mutation of the oncogenic driver to directly prevent drug-mediated inhibition and the activation of compensatory survival pathways. RNA interference (RNAi)-based screening provides a powerful approach for the interrogation of both intrinsic and acquired resistance mechanisms. The availability of short interfering (si)RNA libraries targeting all human and mouse genes has made it possible to perform large-scale unbiased screens to identify pathways that are specifically required in cancer cells of particular genotypes or following particular treatments, facilitating the design of potential new therapeutic strategies that may limit resistance mechanisms. In this review, we will discuss how RNAi screens can be used to uncover critical growth and survival pathways and aid in the identification of novel therapeutic targets for improved treatment of hematological malignancies.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias Hematológicas/genética , Interferencia de ARN , Animales , Genómica , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , ARN Interferente Pequeño/genética
11.
PLoS One ; 7(10): e47060, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056582

RESUMEN

The antiapoptotic Bcl-2 family member Mcl-1 is a PEST protein (containing sequences enriched in proline, glutamic acid, serine, and threonine) and is subject to rapid degradation via multiple pathways. Impaired degradation leading to the maintenance of Mcl-1 expression is an important determinant of drug resistance in cancer. Phosphorylation at Thr 163 in the PEST region, stimulated by 12-O-tetradecanoylphorbol acetic acid (TPA)-induced activation of extracellular signal-regulated kinase (ERK), is associated with Mcl-1 stabilization in BL41-3 Burkitt lymphoma cells. This contrasts with the observation that Thr 163 phosphorylation in normal fibroblasts primes glycogen synthase kinase (GSK3)-induced phosphorylation at Ser 159, producing a phosphodegron that targets Mcl-1 for degradation. In the present follow-up studies in BL41-3 cells, Mcl-1 degradation was found to be independent of the GSK3-mediated pathway, providing a parallel to emerging findings showing that Mcl-1 degradation through this pathway is lost in many different types of cancer. Findings in Mcl-1-transfected CHO cells corroborated those in BL41-3 cells in that the GSK3-targeted phosphodegron did not play a major role in Mcl-1 degradation, and a phosphomimetic T163E mutation resulted in marked Mcl-1 stabilization. TPA-treated BL41-3 cells, in addition to exhibiting Thr 163 phosphorylation and Mcl-1 stabilization, exhibited an ∼10-fold increase in resistance to multiple chemotherapeutic agents, including Ara-C, etoposide, vinblastine, or cisplatin. In these cancer cells in which Mcl-1 degradation is not dependent on the GSK3/phosphodegron-targeted pathway, ERK activation and Thr 163 phosphorylation are associated with pronounced Mcl-1 stabilization and drug resistance - effects that can be suppressed by inhibition of ERK activation.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Treonina/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Células CHO , Línea Celular Tumoral , Cisplatino/farmacología , Cricetinae , Citarabina/farmacología , Resistencia a Antineoplásicos/genética , Etopósido/farmacología , Citometría de Flujo , Glucógeno Sintasa Quinasa 3/genética , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Fosforilación , Estabilidad Proteica , Vinblastina/farmacología
12.
Cancer Cell ; 18(1): 74-87, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20609354

RESUMEN

Although Bcr-Abl kinase inhibitors have proven effective in the treatment of chronic myeloid leukemia (CML), they generally fail to eradicate Bcr-Abl(+) leukemia cells. To identify genes whose inhibition sensitizes Bcr-Abl(+) leukemias to killing by Bcr-Abl inhibitors, we performed an RNAi-based synthetic lethal screen with imatinib mesylate in CML cells. This screen identified numerous components of a Wnt/Ca(2+)/NFAT signaling pathway. Antagonism of this pathway led to impaired NFAT activity, decreased cytokine production, and enhanced sensitivity to Bcr-Abl inhibition. Furthermore, NFAT inhibition with cyclosporin A facilitated leukemia cell elimination by the Bcr-Abl inhibitor dasatinib and markedly improved survival in a mouse model of Bcr-Abl(+) acute lymphoblastic leukemia (ALL). Targeting this pathway in combination with Bcr-Abl inhibition could improve treatment of Bcr-Abl(+) leukemias.


Asunto(s)
Calcio/metabolismo , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Factores de Transcripción NFATC/metabolismo , Cromosoma Filadelfia , Proteínas Wnt/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptosis , Benzamidas , Western Blotting , Proliferación Celular , Ciclosporina/farmacología , Citocinas/metabolismo , Dasatinib , Femenino , Citometría de Flujo , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Inmunosupresores/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/genética , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , ARN Mensajero/genética , ARN Interferente Pequeño/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Tiazoles/farmacología , Células Tumorales Cultivadas , Proteínas Wnt/genética
13.
Cell Cycle ; 4(2): 249-52, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15655352

RESUMEN

The ARF tumor suppressor protein acts in a checkpoint that guards against unscheduled cellular proliferation in response to oncogenic signaling. Deregulated expression of c-Myc induces ARF expression and apoptosis through the ARF-Mdm2-p53 axis. Our recent study reveals a new direct role for ARF in controlling c-Myc's oncogenic activity that is independent of p53. ARF binds to and selectively impairs the transactivation ability of c-Myc while leaving its transrepression ability intact. Biologically, ARF prevents hyper-proliferation and transformation caused by c-Myc and enhances c-Myc-induced apoptosis independently of p53. These new findings may be especially relevant for therapeutic strategies targeting c-Myc-induced cancers.


Asunto(s)
Proliferación Celular , Proteínas Proto-Oncogénicas c-myc/fisiología , Proteína p14ARF Supresora de Tumor/fisiología , Animales , Apoptosis/genética , Línea Celular , Transformación Celular Neoplásica/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal/genética , Activación Transcripcional , Proteína p14ARF Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/fisiología
14.
Nature ; 431(7009): 712-7, 2004 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-15361884

RESUMEN

Increased expression of the oncogenic transcription factor c-Myc causes unregulated cell cycle progression. c-Myc can also cause apoptosis, but it is not known whether the activation and/or repression of c-Myc target genes mediates these diverse functions of c-Myc. Because unchecked cell cycle progression leads to hyperproliferation and tumorigenesis, it is essential for tumour suppressors, such as p53 and p19ARF (ARF), to curb cell cycle progression in response to increased c-Myc (refs 2, 3). Increased c-Myc has previously been shown to induce ARF expression, which leads to cell cycle arrest or apoptosis through the activation of p53 (ref. 4). Here we show that ARF can inhibit c-Myc by a unique and direct mechanism that is independent of p53. When c-Myc increases, ARF binds with c-Myc and dramatically blocks c-Myc's ability to activate transcription and induce hyperproliferation and transformation. In contrast, c-Myc's ability to repress transcription is unaffected by ARF and c-Myc-mediated apoptosis is enhanced. These differential effects of ARF on c-Myc function suggest that separate molecular mechanisms mediate c-Myc-induced hyperproliferation and apoptosis. This direct feedback mechanism represents a p53-independent checkpoint to prevent c-Myc-mediated tumorigenesis.


Asunto(s)
Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Ciclo Celular , División Celular , Línea Celular , Transformación Celular Neoplásica , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Ratones , Pruebas de Precipitina , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Ratas , Transcripción Genética , Proteína p14ARF Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/genética
15.
Oncogene ; 23(31): 5301-15, 2004 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-15241487

RESUMEN

BCL2 family members are subject to regulation at multiple levels, providing checks on their ability to contribute to tumorigenesis. However, findings on post-translational BCL2 phosphorylation in different systems have been difficult to integrate. Another antiapoptotic family member, MCL1, exhibits a difference in electrophoretic mobility upon phosphorylation induced by an activator of PKC (12-O-tetradecanoylphorbol 13-acetate; TPA) versus agents that act on microtubules or protein phosphatases 1/2A. A multiple pathway model is now presented, which demonstrates that MCL1 can undergo distinct phosphorylation events - mediated through separate signaling processes and involving different target sites - in cells that remain viable in the presence of TPA versus cells destined to die upon exposure to taxol or okadaic acid. Specifically, TPA induces phosphorylation at a conserved extracellular signal-regulated kinase (ERK) site in the PEST region (Thr 163) and slows turnover of the normally rapidly degraded MCL1 protein; however, okadaic acid and taxol induce ERK-independent MCL1 phosphorylation at additional discrete sites. These findings add a new dimension to our understanding of the complex regulation of antiapoptotic BCL2 family members by demonstrating that, in addition to transcriptional and post-transcriptional regulation, MCL1 is subject to multiple, separate, post-translational phosphorylation events, produced in living versus dying cells at ERK-inducible versus ERK-independent sites.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Neoplasias/metabolismo , Secuencia de Aminoácidos , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Sitios de Unión , Células CHO , Carcinógenos , Línea Celular Tumoral , Supervivencia Celular , Cricetinae , Perros , Relación Dosis-Respuesta a Droga , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Datos de Secuencia Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas de Neoplasias/química , Ácido Ocadaico/farmacología , Paclitaxel/farmacología , Mapeo Peptídico , Fosforilación , Pruebas de Precipitina , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Acetato de Tetradecanoilforbol , Treonina/química , Factores de Tiempo , Transfección
16.
J Biol Chem ; 278(51): 51606-12, 2003 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-14563837

RESUMEN

The c-Myc protein is a transcription factor that is a central regulator of cell growth and proliferation. Thr-58 is a major phosphorylation site in c-Myc and is a mutational hotspot in Burkitt's and other aggressive human lymphomas, indicating that Thr-58 phosphorylation restricts the oncogenic potential of c-Myc. Mutation of Thr-58 is also associated with increased c-Myc protein stability. Here we show that inhibition of glycogen synthase kinase-3 (GSK-3) activity with lithium increases c-Myc stability and inhibits phosphorylation of c-Myc specifically at Thr-58 in vivo. Conversely, overexpression of GSK-3 alpha or GSK-3 beta enhances Thr-58 phosphorylation and ubiquitination of c-Myc. Together, these observations suggest that phosphorylation of Thr-58 mediated by GSK-3 facilitates c-Myc rapid proteolysis by the ubiquitin pathway. Furthermore, we demonstrate that GSK-3 binds c-Myc in vivo and in vitro and that GSK-3 colocalizes with c-Myc in the nucleus, strongly arguing that GSK-3 is the c-Myc Thr-58 kinase. We found that c-MycS, which lacks the N-terminal 100 amino acids of c-Myc, is unable to bind GSK-3; however, mutation of Ser-62, the priming phosphorylation site necessary for Thr-58 phosphorylation, does not disrupt GSK-3 binding. Finally, we show that Thr-58 phosphorylation alters the subnuclear localization of c-Myc, enhancing its localization to discrete nuclear bodies together with GSK-3.


Asunto(s)
Núcleo Celular/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Núcleo Celular/química , Glucógeno Sintasa Quinasa 3/fisiología , Ratones , Fosforilación , Unión Proteica , Transfección , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA