Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Appl Ergon ; 121: 104355, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029306

RESUMEN

This analysis examined systemic causes of Uncrewed Air Vehicle (UAV) accidents identifying operator, environmental, supervisory, and organisational factors through the use of the Human Factors Analysis and Classification System (HFACS). HFACS is a system-based analysis method for investigating the causal factors associated with accidents and incidents and has previously been used to reliably and systematically identify active and latent failures associated with both military and general aviation accidents. Whilst HFACS has previously been applied to UAV accidents, the last known application was conducted in 2014. Using reports retrieved from nine accident investigation organisations' databases, causal factors were coded against unsafe acts, preconditions, and failures at the supervisory, organisational, and environmental levels. Causal factors were assessed on 77 medium or large UAV mishaps/accidents that occurred over a 12-year period up to 2024. 42 mishap reports were deemed to involve a human factor as a causal factor. A large proportion of the mishaps contained factors attributed to Decision Errors at level 1 (Unsafe Acts) which was found to be associated with both the Technological Environment and Adverse Mental State at level 2 (Pre-conditions). Causal factors were identified at each of the other 3 levels (Supervisory, Organisational and External) with a number of emergent associations between causal factors. These data provide support for the identification and development of interventions aimed at improving the safety of organisations and advice of regulators for Uncrewed Air Systems.

2.
J Eye Mov Res ; 15(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-37179771

RESUMEN

We study an individual's propensity for rational thinking; the avoidance of cognitive biases (unconscious errors generated by our mental simplification methods) using a novel augmented reality (AR) platform. Specifically, we developed an odd-one-out (OOO) game-like task in AR designed to try to induce and assess confirmatory biases. Forty students completed the AR task in the laboratory, and the short form of the comprehensive assessment of rational thinking (CART) online via the Qualtrics platform. We demonstrate that behavioural markers (based on eye, hand and head movements) can be associated (linear regression) with the short CART score - more rational thinkers have slower head and hand movements and faster gaze movements in the second more ambiguous round of the OOO task. Furthermore, short CART scores can be associated with the change in behaviour between two rounds of the OOO task (one less and one more ambiguous) - hand-eye-head coordination patterns of the more rational thinkers are more consistent in the two rounds. Overall, we demonstrate the benefits of augmenting eye-tracking recordings with additional data modalities when trying to understand complicated behaviours.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA