RESUMEN
Oligodendrocytes (OLs), the myelin-generating cells of the central nervous system (CNS), are active players in shaping neuronal circuitry and function. It has become increasingly apparent that injury to cells within the OL lineage plays a central role in neurodegeneration. In this review, we focus primarily on three degenerative disorders in which white matter loss is well documented: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We discuss clinical data implicating white matter injury as a key feature of these disorders, as well as shared and divergent phenotypes between them. We examine the cellular and molecular mechanisms underlying the alterations to OLs, including chronic neuroinflammation, aggregation of proteins, lipid dysregulation, and organellar stress. Last, we highlight prospects for therapeutic intervention targeting the OL lineage to restore function.
Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Sustancia Blanca , Humanos , Enfermedades Neurodegenerativas/metabolismo , Sustancia Blanca/metabolismoRESUMEN
Combined antiretroviral therapy (cART) has greatly decreased mortality and morbidity among persons with HIV; however, neurologic impairments remain prevalent, in particular HIV-associated neurocognitive disorders (HANDs). White matter damage persists in cART-treated persons with HIV and may contribute to neurocognitive dysfunction as the lipid-rich myelin membrane of oligodendrocytes is essential for efficient nerve conduction. Because of the importance of lipids to proper myelination, we examined the regulation of lipid synthesis in oligodendrocyte cultures exposed to the integrase strand transfer inhibitor elvitegravir (EVG), which is administered to persons with HIV as part of their initial regimen. We show that protein levels of genes involved in the fatty acid pathway were reduced, which correlated with greatly diminished de novo levels of fatty acid synthesis. In addition, major regulators of cellular lipid metabolism, the sterol regulatory element-binding proteins (SREBP) 1 and 2, were strikingly altered following exposure to EVG. Impaired oligodendrocyte differentiation manifested as a marked reduction in mature oligodendrocytes. Interestingly, most of these deleterious effects could be prevented by adding serum albumin, a clinically approved neuroprotectant. These new findings, together with our previous study, strengthen the possibility that antiretroviral therapy, at least partially through lipid dysregulation, may contribute to the persistence of white matter changes observed in persons with HIV and that some antiretrovirals may be preferable as life-long therapy.
RESUMEN
PURPOSE OF REVIEW: : Behaviorally acquired (non-perinatal) HIV infection during adolescence and young adulthood occurs in the midst of key brain developmental processes such as frontal lobe neuronal pruning and myelination of white matter, but we know little about the effects of new infection and therapy on the developing brain. RECENT FINDINGS: Adolescents and young adults account for a disproportionately high fraction of new HIV infections each year. Limited data exist regarding neurocognitive performance in this age group, but suggest impairment is at least as prevalent as in older adults, despite lower viremia, higher CD4 + T cell counts, and shorter durations of infection in adolescents/young adults. Neuroimaging and neuropathologic studies specific to this population are underway. The full impact of HIV on brain growth and development in youth with behaviorally acquired HIV has yet to be determined; it must be investigated further to develop future targeted treatment and mitigation strategies.
Asunto(s)
Infecciones por VIH , Humanos , Adolescente , Adulto Joven , Anciano , Adulto , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Linfocitos T CD4-Positivos , Neuroimagen , Lóbulo FrontalRESUMEN
White matter deficits are a common neuropathologic finding in neurologic disorders, including HIV-associated neurocognitive disorders (HAND). In HAND, the persistence of white matter alterations despite suppressive antiretroviral (ARV) therapy suggests that ARVs may be directly contributing to these impairments. Here, we report that a frontline ARV, bictegravir (BIC), significantly attenuates remyelination following cuprizone-mediated demyelination, a model that recapitulates acute demyelination, but has no impact on already formed mature myelin. Mechanistic studies utilizing primary rat oligodendrocyte precursor cells (OPCs) revealed that treatment with BIC leads to significant decrease in mature oligodendrocytes accompanied by lysosomal deacidification and impairment of lysosomal degradative capacity with no alterations in lysosomal membrane permeability or total lysosome number. Activation of the endolysosomal cation channel TRPML1 prevents both lysosomal deacidification and impairment of oligodendrocyte differentiation by BIC. Lastly, we show that deacidification of lysosomes by compounds that raise lysosomal pH is sufficient to prevent maturation of oligodendrocytes. Overall, this study has uncovered a critical role for lysosomal acidification in modulating oligodendrocyte function and has implications for neurologic diseases characterized by lysosomal dysfunction and white matter abnormalities.
Asunto(s)
Enfermedades Desmielinizantes , Ratas , Animales , Ratones , Enfermedades Desmielinizantes/patología , Vaina de Mielina/patología , Cuprizona , Oligodendroglía/patología , Lisosomas/patología , Diferenciación Celular , Ratones Endogámicos C57BLRESUMEN
The idea that myelination is driven by both intrinsic and extrinsic cues has gained much traction in recent years. Studies have demonstrated that myelination occurs in an intrinsic manner during early development and continues through adulthood in an activity-dependent manner called adaptive myelination. Motor learning, the gradual acquisition of a specific novel motor skill, promotes adaptive myelination in both the healthy and demyelinated central nervous system (CNS). On the other hand, exercise, a physical activity that involves planned, structured and repetitive bodily movements that expend energy and benefits one's fitness, promotes remyelination in pathology, but it is less clear whether it promotes adaptive myelination in healthy subjects. Studies on these topics have also investigated whether the timing of motor learning or physical exercise is important for successful addition of myelin. Here we review our current understanding of the relationship of motor skill learning and physical exercise on myelination.
Asunto(s)
Ejercicio Físico , Remielinización , Sistema Nervioso Central , Ejercicio Físico/fisiología , Humanos , Aprendizaje/fisiología , Vaina de MielinaRESUMEN
BACKGROUND: A recurrent homozygous missense variant, c.160G>C;p.(Val54Leu) in HIKESHI, was found to cause a hypomyelinating leukodystrophy with high frequency in the Ashkenazi Jewish population. We provide extended phenotypic classification of this disorder based on clinical history of a further seven affected individuals, assess carrier frequency in the Ashkenazi Jewish population, and provide a neuropathological study. METHODS: Clinical information, neuroimaging, and biosamples were collected. Brain autopsy was performed for one case. RESULTS: Individuals with HIKESHI-related disease share common clinical features: early axial hypotonia evolving to dystonia or with progressive spasticity, hyperreflexia and clonus, feeding difficulties with poor growth, and nystagmus. Severe morbidity or death during febrile illness occurred in five of the nine affected individuals. Magnetic resonance images of seven patients were analyzed and demonstrated diffuse hypomyelination and thin corpus callosum. Genotyping data of more than 125,000 Ashkenazi Jewish individuals revealed a carrier frequency of 1 in 216. Gross pathology examination in one case revealed abnormal white matter. Microscopically, there was a near-total absence of myelin with a relative preservation of axons. The cerebral white matter showed several reactive astrocytes and microglia. CONCLUSIONS: We provide pathologic evidence for a primary disorder of the myelin in HIKESHI-related leukodystrophy. These findings are consistent with the hypomyelination seen in brain magnetic resonance imaging and with the clinical features of early-onset spastic/dystonic quadriplegia and nystagmus. The high carrier rate of the recurrent variant seen in the Ashkenazi Jewish population requires increased attention to screening and diagnosis of this condition, particularly in this population.
Asunto(s)
Proteínas Portadoras/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/fisiopatología , Niño , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Humanos , Judíos/genética , Imagen por Resonancia Magnética , Secuenciación Completa del GenomaRESUMEN
Despite combined antiretroviral therapy (cART), HIV-associated neurocognitive disorder (HAND) affects 30-50% of HIV-positive patients. Importantly, persistent white matter pathologies, specifically corpus callosum thinning and disruption of white matter microstructures observed in patients with HAND despite viral control through cART, raise the possibility that HIV infection in the setting of suboptimal cART may perturb oligodendrocyte (OL) maturation, function and/or survival, influencing HAND persistence in the cART era. To examine the effect of HIV infection on OL maturation, we used supernatants of primary human monocyte-derived macrophages infected with HIV (HIV/MDMs) to treat primary cultures of rat oligodendrocyte precursor cells (OPCs) during their differentiation to mature OLs. Using immunostaining for lineage-specific markers, we found that HIV/MDMs significantly inhibited OPC maturation. Based on our previous studies, we examined the potential role of several signaling pathways, including ionotropic glutamate receptors and the integrated stress response (ISR), and found that AMPA receptors (AMPAR)/kainic acid (KA) receptors (KARs) mediated the HIV/MDMs-induced defect in OL maturation. We also found that the treatment of OPC cultures with glutamate or AMPAR/KAR agonists phenocopied this effect. Blocking ISR activation, specifically the PERK arm of the ISR, protected OPCs from HIV/MDMs-mediated inhibition of OL maturation. Further, while glutamate, AMPA, and KA activated the ISR, inhibition of AMPAR/KAR activation prevented ISR induction in OPCs and rescued OL maturation. Collectively, these data identify glutamate signaling via ISR activation as a potential therapeutic pathway to ameliorate white matter pathologies in HAND and highlight the need for further investigation of their contribution to cognitive impairment.
Asunto(s)
Infecciones por VIH , Células Precursoras de Oligodendrocitos , Animales , Diferenciación Celular , Células Cultivadas , Ácido Glutámico/metabolismo , Infecciones por VIH/patología , Humanos , Enfermedades Neuroinflamatorias , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , RatasRESUMEN
CLEC16A has been shown to play a role in autophagy/mitophagy processes. Additionally, genetic variants in CLEC16A have been implicated in multiple autoimmune diseases. We generated an inducible whole-body knockout, Clec16aΔUBC mice, to investigate the loss of function of CLEC16A. The mice exhibited a neuronal phenotype including tremors and impaired gait that rapidly progressed to dystonic postures. Nerve conduction studies and pathological analysis revealed loss of sensory axons that are associated with this phenotype. Activated microglia and astrocytes were found in regions of the CNS. Several mitochondrial-related proteins were up- or down-regulated. Upregulation of interferon stimulated gene 15 (IGS15) were observed in neuronal tissues. CLEC16A expression inversely related to IGS15 expression. ISG15 may be the link between CLEC16A and downstream autoimmune, inflammatory processes. Our results demonstrate that a whole-body, inducible knockout of Clec16a in mice results in an inflammatory neurodegenerative phenotype resembling spinocerebellar ataxia.
Asunto(s)
Lectinas Tipo C/fisiología , Proteínas de Transporte de Monosacáridos/fisiología , Enfermedad Autoinmune Experimental del Sistema Nervioso , Ataxias Espinocerebelosas , Animales , Citocinas/metabolismo , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones Noqueados , Neuronas/ultraestructura , Ubiquitinas/metabolismoRESUMEN
Despite the introduction of antiretroviral (ARV) therapy (ART), approximately 30-50% of people living with human immunodeficiency virus-1 (HIV-1) will develop a spectrum of measurable neurocognitive dysfunction, collectively called HIV-associated neurocognitive disorder (HAND). While the clinical manifestations of HAND have changed with the advent of ART, certain pathological features have endured, including white matter alterations and dysfunction. The persistence of white matter alterations in the post-ART era suggests that ARV drugs themselves may contribute to HAND pathology. Our group has previously demonstrated that two ARV compounds from the protease inhibitor (PI) class, ritonavir and lopinavir, inhibit oligodendrocyte maturation and myelin protein production. We hypothesized that other members of the PI class, saquinavir and darunavir, could also negatively impact oligodendrocyte differentiation. Here we demonstrate that treating primary rat oligodendrocyte precursor cells with therapeutically relevant concentrations of either ARV drug results in a concentration-dependent inhibition of oligodendrocyte maturation in vitro. Furthermore, we show that acidifying endolysosomal pH via a mucolipin transient receptor potential channel 1 (TRPML1) agonist provides protection against saquinavir- and darunavir-induced inhibition of oligodendrocyte maturation. Moreover, our findings suggest, for the first time, an imperative role of proper endolysosomal pH in regulating OL differentation, and that therapeutic targeting of endolysosomes may provide protection against ARV-induced oligodendrocyte dysregulation. Graphical Abstract Treatment of primary rat oligodendrocyte precursor cells with therapeutically relevant concentrations of either antiretroviral compound of the protease inhibitor class, darunavir or saquinavir, results in a concentration-dependent inhibition of oligodendrocyte maturation in vitro. Additionally, in darunavir or saquinavir-treated cultures we observed a concentration-dependent decrease in the number of acidic lysosomes, via immunostaining with LysoTracker Red, compared with vehicle-treated cultures. Finally, we showed that acidifying endolysosomal pH via a mucolipin transient receptor potential channel 1 (TRPML1) agonist provides protection against saquinavir- or darunavir-induced inhibition of oligodendrocyte maturation. Our findings suggest, for the first time, a critical role of proper endolysosomal pH in regulating OL differentation, and that therapeutic targeting of endolysosomes may provide protection against antiretroviral-induced oligodendrocyte dysregulation.
Asunto(s)
Darunavir/farmacología , Endosomas/efectos de los fármacos , Inhibidores de la Proteasa del VIH/farmacología , Lisosomas/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Saquinavir/farmacología , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Darunavir/toxicidad , Depresión Química , Relación Dosis-Respuesta a Droga , Endosomas/química , Inhibidores de la Proteasa del VIH/toxicidad , Concentración de Iones de Hidrógeno , Lisosomas/química , Proteínas de la Mielina/biosíntesis , Estrés Oxidativo , Ftalimidas/farmacología , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Saquinavir/toxicidad , Canales de Potencial de Receptor Transitorio/agonistasRESUMEN
Regardless of adherence to combined antiretroviral therapy, white matter and myelin pathologies persist in patients with HIV-associated neurocognitive disorders, a spectrum of cognitive, motor, and behavioral impairments. We hypothesized that antiretroviral therapy alters the maturation of oligodendrocytes which synthesize myelin. We tested whether specific frontline integrase strand transfer inhibitors would alter oligodendrocyte differentiation and myelination. To model the effect of antiretrovirals on oligodendrocytes, we stimulated primary rat oligodendrocyte precursor cells to differentiate into mature oligodendrocytes in vitro in the presence of therapeutically relevant concentrations of elvitegravir or raltegravir and then assessed differentiation with lineage specific markers. To examine the effect of antiretrovirals on myelination, we treated mice with the demyelinating compound cuprizone, for 5 weeks. This was followed by 3 weeks of recovery in absence of cuprizone, during which time some mice received a daily intrajugular injection of elvitegravir. Brains were harvested, sectioned and processed by immunohistochemistry to examine oligodendrocyte maturation and myelination. Elvitegravir inhibited oligodendrocyte differentiation in vitro in a concentration-dependent manner, while raltegravir had no effect. Following cuprizone demyelination, administration of elvitegravir to adult mice reduced remyelination compared with control animals. Elvitegravir treatment activated the integrated stress response in oligodendrocytes in vitro, an effect which was completely blocked by pretreatment with the integrated stress response inhibitor Trans-ISRIB, preventing elvitegravir-mediated inhibition of oligodendrocyte maturation. These studies demonstrate that elvitegravir impairs oligodendrocyte maturation and remyelination and that the integrated stress response mediates this effect and may be a possible therapeutic target.
Asunto(s)
Oligodendroglía , Animales , Diferenciación Celular , Cuprizona , Infecciones por VIH , Humanos , Integrasas , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina , Quinolonas , Raltegravir Potásico , RatasRESUMEN
During demyelinating disease such as multiple sclerosis and stroke, myelin is destroyed and along with it, the oligodendrocytes that synthesize the myelin. Thus, recovery is limited due to both interruptions in neuronal transmission as well as lack of support for neurons. Although oligodendrocyte progenitor cells remain abundant in the central nervous system, they rarely mature and form new functional myelin in the diseased CNS. In cell culture and in experimental models of demyelinating disease, inhibitory signaling factors decrease myelination and remyelination. One of the most potent of these are the bone morphogenetic proteins (BMPs), a family of proteins that strongly inhibits oligodendrocyte progenitor differentiation and myelination in culture. BMPs are highly expressed in the dorsal CNS during pre-natal development and serve to regulate dorsal ventral patterning. Their expression decreases after birth but is significantly increased in rodent demyelination models such as experimental autoimmune encephalomyelitis, cuprizone ingestion and spinal cord injury. However, until recently, evidence for BMP upregulation in human disease has been scarce. This review discusses new human studies showing that in multiple sclerosis and other demyelinating diseases, BMPs are expressed by immune cells invading the CNS as well as resident CNS cell types, mostly astrocytes and microglia. Expression of endogenous BMP antagonists is also regulated. Identification of BMPs in the CNS is correlated with areas of demyelination and inflammation. These studies further support BMP as a potential therapeutic target.
Asunto(s)
Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Vaina de Mielina/metabolismo , Enfermedades del Sistema Nervioso/patología , Remielinización , Animales , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Transducción de Señal , Regulación hacia ArribaRESUMEN
OBJECTIVE: Neuroimmune cells, particularly microglia and astrocytes, play a critical role in neurodevelopment. Neurocognitive delays are common in children with congenital heart disease, but their etiology is poorly understood. Our objective was to determine whether prenatal hypoxemia, at levels common in congenital heart disease, induced neuroimmune activation to better understand the origins of neurobehavioral disorders in congenital heart disease. METHODS: Eight fetal sheep at gestational age 109 ± 3 days (term â¼145 days) were cannulated onto a pumpless extracorporeal oxygenator via the umbilical vessels and supported in a fluid environment for 22 ± 2 days under normoxic (n = 4) or hypoxic (n = 4) conditions. Control fetuses (n = 7) were harvested at gestational age 133 ± 4 days. At necropsy, brains were stained with ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein antibodies to quantify microglia and astrocytes, respectively, in gray and white matter in frontotemporal and cerebellar sections. Microglia were classified into 4 morphologic types based on cell shape. Data were analyzed with 1-way analysis of variance or Fisher exact test, as appropriate. RESULTS: Oxygen delivery was significantly reduced in hypoxic fetuses (15.6 ± 1.8 mL/kg/min vs 24.3 ± 2.3 mL/kg/min; P < .01). Rates of apoptosis were similar in hypoxic, normoxic, and intrauterine control animals in all examined areas. There were also no differences between groups in area occupied by glial fibrillary acidic protein-labeled astrocytes or ionized calcium-binding adaptor molecule 1-labeled microglia in all examined areas. However, round microglia were significantly increased in hypoxic animals compared with normoxic animals (33% vs 6%; P < .01) and control animals (33% vs 11%; P < .01). CONCLUSIONS: Prenatal hypoxemia altered microglial morphology without significant gliosis. Additional studies characterizing these mechanisms may provide insight into the origins of neurobehavioral disabilities in children with congenital heart disease.
RESUMEN
BACKGROUND: Intrauterine growth restriction (IUGR) is a common complication of pregnancy and is associated with significant neurological deficits in infants, including white matter damage. Previous work using an animal model of IUGR has demonstrated that IUGR rats exhibit neurobehavioral deficits and developmental delays in oligodendrocyte maturation and myelination, but the mechanisms which cause this delay are unknown. Inflammation may be an important etiological factor in IUGR and has been recognized as playing a fundamental role in the pathogenesis of myelin disorders, including cerebral palsy. METHODS: To create the model, the uterine arteries of pregnant rats were ligated at embryonic day 15. Rats delivered spontaneously. Cytokine and chemokine expression was evaluated at one prenatal and three postnatal time points, and myelin protein expression and oligodendrocyte cell numbers were evaluated by several methods at postnatal day 14. IL-4 was identified as a potential inhibitor of myelination, and rat pups were injected with IL-4 function blocking antibody from postnatal days 1-5 and myelination was assessed. RESULTS: Here, we show a novel mechanism of white matter injury. IUGR induces an exaggerated Th2 response in the developing rat brain, including upregulation of several Th2 cytokines. Of these, IL-4 is significantly increased during the period corresponding to robust developmental myelination. We show that neutralizing IL-4 antibody therapy given in the newborn period ameliorates inflammation and restores myelin protein expression and oligodendrocyte cell number in the IUGR brain to control levels, demonstrating a novel role for Th2 responses and IL-4 in IUGR and white matter injury. In addition, IL-4 directly affects oligodendrocytes in vitro decreasing differentiation. CONCLUSIONS: In this study, we have identified inflammation as a factor in the decrease in myelin seen in an animal model of IUGR. IL-4, an inflammatory protein often thought to be protective in the adult, is specifically increased, and treatment of these animals to prevent this increase ameliorates white matter damage. Our results suggest that the immune system plays a role in IUGR that is different in the perinatal period than in the adult and preventing this exaggerated Th2 response may be a potential therapeutic target.
Asunto(s)
Encéfalo/inmunología , Encefalitis/inmunología , Retardo del Crecimiento Fetal/inmunología , Interleucina-4/inmunología , Vaina de Mielina/inmunología , Células Th2/inmunología , Animales , Modelos Animales de Enfermedad , Encefalitis/complicaciones , Femenino , Macrófagos/inmunología , Masculino , Microglía/inmunología , Ratas Sprague-Dawley , Sustancia Blanca/inmunologíaRESUMEN
While the severe cognitive effects of HIV-associated dementia have been reduced by combined antiretroviral therapy (cART), nearly half of HIV-positive (HIV+) patients still suffer from some form of HIV-Associated Neurocognitive Disorders (HAND). While frank neuronal loss has been dramatically reduced in HAND patients, white matter loss, including dramatic thinning of the corpus callosum, and loss of volume and structural integrity of myelin persists despite viral control by cART. It remains unclear whether changes in white matter underlie the clinical manifestation seen in patients or whether they are the result of persistent viral reservoirs, remnant damage from the acute infection, the antiretroviral compounds used to treat HIV, secondary effects due to peripheral toxicities or other associated comorbid conditions. Both HIV infection itself and its treatment with antiretroviral drugs can induce metabolic syndrome, lipodystrophy, atherosclerosis and peripheral neuropathies by increased oxidative stress, induction of the unfolded protein response and dysregulation of lipid metabolism. These virally and/or cART-induced processes can also cause myelin loss in the CNS. This review aims to highlight existing data on the contribution of white matter damage to HAND and explore the mechanisms by which HIV infection and its treatment contribute to persistence of white matter changes in people living with HIV currently on cART.
Asunto(s)
Infecciones por VIH/fisiopatología , Oligodendroglía/metabolismo , Sustancia Blanca/fisiopatología , Complejo SIDA Demencia/etiología , Complejo SIDA Demencia/fisiopatología , Terapia Antirretroviral Altamente Activa/efectos adversos , Humanos , Vaina de Mielina , Neuroinmunomodulación , Enfermedades del Sistema Nervioso Periférico/complicaciones , Carga ViralRESUMEN
OBJECTIVE: We tested the hypothesis that chronic fetal hypoxia, at a severity present in many types of congenital heart disease, would lead to abnormal neurodevelopment. METHODS: Eight mid-gestation fetal sheep were cannulated onto a pumpless extracorporeal oxygenator via the umbilical vessels and supported in a fluid-filled environment for 22 ± 2 days under normoxic or hypoxic conditions. Total parenteral nutrition was provided. Control fetuses (n = 7) were harvested at gestational age 133 ± 4 days. At necropsy, brains were fixed for histopathology. Neurons were quantified in white matter tracts, and the thickness of the external granular layer of the cerebellum was measured to assess neuronal migration. Capillary density and myelination were quantified in white matter. Data were analyzed with unpaired Student t tests or 1-way analysis of variance, as appropriate. RESULTS: Oxygen delivery was reduced in hypoxic fetuses (15.6 ± 1.8 mL/kg/min vs 24.3 ± 2.3 mL/kg/min, P < .01), but umbilical blood flow and caloric delivery were not different between the 2 groups. Compared with normoxic and control animals, hypoxic fetuses had reduced neuronal density and increased external granular layer thickness. Compared with normoxic and control animals, hypoxic fetuses had increased capillary density in white matter. Cortical myelin integrity score was lower in the hypoxic group compared with normoxic and control animals. There was a significant negative correlation between myelin integrity and capillary density. CONCLUSIONS: Chronic fetal hypoxia leads to white matter hyper-vascularity, decreased neuronal density, and impaired myelination, similar to the neuropathologic findings observed in children with congenital heart disease. These findings support the hypothesis that fetal hypoxia, even in the setting of normal caloric delivery, impairs neurodevelopment.
Asunto(s)
Encefalopatías/fisiopatología , Encéfalo/crecimiento & desarrollo , Capilares/fisiopatología , Hipoxia Fetal/fisiopatología , Neovascularización Fisiológica , Neurogénesis , Neuronas , Animales , Apoptosis , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatías/sangre , Encefalopatías/patología , Capilares/patología , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Sangre Fetal/metabolismo , Desarrollo Fetal , Hipoxia Fetal/sangre , Hipoxia Fetal/patología , Edad Gestacional , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Neuronas/patología , Oxígeno/sangre , Embarazo , Oveja DomésticaRESUMEN
Early brain development requires a tight orchestration between neural tube patterning and growth. How pattern formation and brain growth are coordinated is incompletely understood. Previously we showed that aristaless-related homeobox (ARX), a paired-like transcription factor, regulates cortical progenitor pool expansion by repressing an inhibitor of cell cycle progression. Here we show that ARX participates in establishing dorsoventral identity in the mouse forebrain. In Arx mutant mice, ventral genes, including Olig2, are ectopically expressed dorsally. Furthermore, Gli1 is upregulated, suggesting an ectopic activation of SHH signaling. We show that the ectopic Olig2 expression can be repressed by blocking SHH signaling, implicating a role for SHH signaling in Olig2 induction. We further demonstrate that the ectopic Olig2 accounts for the reduced Pax6 and Tbr2 expression, both dorsal specific genes essential for cortical progenitor cell proliferation. These data suggest a link between the control of dorsoventral identity of progenitor cells and the control of their proliferation. In summary, our data demonstrate that ARX functions in a gene regulatory network integrating normal forebrain patterning and growth, providing important insight into how mutations in ARX can disrupt multiple aspects of brain development and thus generate a wide spectrum of neurodevelopmental phenotypes observed in human patients.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Prosencéfalo/embriología , Factores de Transcripción/metabolismo , Animales , Tipificación del Cuerpo , Redes Reguladoras de Genes , Proteínas Hedgehog/metabolismo , Ratones , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismoRESUMEN
The formation of the myelin membrane of the oligodendrocyte in the CNS is a fundamental process requiring the coordinated synthesis of many different components. The myelin membrane is particularly rich in lipids, however, the regulation of this lipid synthesis is not understood. In other cell types, including Schwann cells, the myelin-forming cells of the PNS, lipid synthesis is tightly regulated by the sterol regulatory element-binding protein (SREBP) family of transcription factors, but this has not been previously shown in oligodendrocytes. We investigated SREBPs' role during oligodendrocyte differentiation in vitro. Both SREBP-1 and SREBP-2 were expressed in oligodendrocyte precursor cells and differentiating oligodendrocytes. Using the selective site-1 protease (S1P) inhibitor PF-429242, which inhibits the cleavage of SREBP precursor forms into mature forms, we found that preventing SREBP processing inhibited process growth and reduced the expression level of myelin basic protein, a major component of myelin. Further, process extension deficits could be rescued by the addition of exogenous cholesterol. Blocking SREBP processing reduced mRNA transcription and protein levels of SREBP target genes involved in both the fatty acid and the cholesterol synthetic pathways. Furthermore, de novo levels and total levels of cholesterol synthesis were greatly diminished when SREBP processing was inhibited. Together these results indicate that SREBPs are important regulators of oligodendrocyte maturation and that perturbation of their activity may affect myelin formation and integrity. Cover Image for this issue: doi: 10.1111/jnc.13781.
Asunto(s)
Diferenciación Celular/fisiología , Oligodendroglía/metabolismo , Proproteína Convertasas/antagonistas & inhibidores , Proproteína Convertasas/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Masculino , Ratones , Oligodendroglía/efectos de los fármacos , Pirrolidinas/farmacología , Proteínas de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidoresRESUMEN
Despite effective viral suppression through combined antiretroviral therapy (cART), approximately half of HIV-positive individuals have HIV-associated neurocognitive disorders (HAND). Studies of antiretroviral-treated patients have revealed persistent white matter abnormalities including diffuse myelin pallor, diminished white matter tracts, and decreased myelin protein mRNAs. Loss of myelin can contribute to neurocognitive dysfunction because the myelin membrane generated by oligodendrocytes is essential for rapid signal transduction and axonal maintenance. We hypothesized that myelin changes in HAND are partly due to effects of antiretroviral drugs on oligodendrocyte survival and/or maturation. We showed that primary mouse oligodendrocyte precursor cell cultures treated with therapeutic concentrations of HIV protease inhibitors ritonavir or lopinavir displayed dose-dependent decreases in oligodendrocyte maturation; however, this effect was rapidly reversed after drug removal. Conversely, nucleoside reverse transcriptase inhibitor zidovudine had no effect. Furthermore, in vivo ritonavir administration to adult mice reduced frontal cortex myelin protein levels. Finally, prefrontal cortex tissue from HIV-positive individuals with HAND on cART showed a significant decrease in myelin basic protein compared with untreated HIV-positive individuals with HAND or HIV-negative controls. These findings demonstrate that antiretrovirals can impact myelin integrity and have implications for myelination in juvenile HIV patients and myelin maintenance in adults on lifelong therapy.
Asunto(s)
Antirreumáticos/uso terapéutico , Regulación Viral de la Expresión Génica/efectos de los fármacos , Infecciones por VIH , Vaina de Mielina/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Adulto , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Trastornos del Conocimiento/etiología , Estudios de Cohortes , Modelos Animales de Enfermedad , Gangliósidos/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteína Básica de Mielina/metabolismo , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/virología , Oligodendroglía/virología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Myelin, the lipid membrane that surrounds axons, is critical for the propagation of nervous impulses and axonal maintenance. The destruction of myelin or lack of myelin formation due to disease or injury causes severe motor and cognitive disability. Regeneration of myelin is theoretically possible but rarely happens. Myelin is synthesized as the plasma membrane of the oligodendrocyte in the central nervous system. During development, myelin and oligodendrocytes are generated from oligodendrocyte progenitors through a process modulated by extrinsic growth factors signaling to cell-intrinsic proteins. Among the key extrinsic factors are the bone morphogenetic proteins (BMPs), potent inhibitors of oligodendrocyte differentiation and myelin protein expression, likely serving to regulate myelination temporally and spatially. BMPs also promote astrocyte generation. Given the inhibitory role of BMP in oligodendrogliogenesis during development, the expression of BMP during demyelinating disease or injury was investigated, as was whether BMP upregulation could serve to prevent regeneration by both direct inhibition of myelination and increases in astrogliosis. BMPs, predominantly BMP4, were increased in animal models of spinal cord injury, stroke, multiple sclerosis, and perinatal white matter injury. A number of studies inhibited BMP signaling by infusing the injury site with the BMP-specific inhibitor noggin or transplanting stem cells engineered to secrete noggin. In most cases, noggin increased the numbers of mature oligodendrocytes and decreased numbers of astrocytes. Some studies also showed functional improvement. BMP is one of several inhibitory growth factors that now appear to inhibit myelin regeneration. Common downstream mechanisms among these factors are likely to be identified.
Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Vaina de Mielina/patología , Oligodendroglía/citología , Transducción de Señal/genética , Animales , Proteína Morfogenética Ósea 4/metabolismo , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/genética , Proteínas Portadoras/metabolismo , Humanos , Leucoencefalopatías/metabolismo , Leucoencefalopatías/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Oligodendroglía/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patologíaRESUMEN
Demyelination in the central nervous system induced by neurovirulent strains of Mouse Hepatitis Virus (MHV) is mediated by the viral spike glycoprotein, but it is not clear whether the mechanism of this disease pathology involves direct viral infection of oligodendrocytes. Detailed studies of glial cell tropism of MHV are presented, demonstrating that direct MHV infection of oligodendrocytes differs between demyelinating (RSA59) and non-demyelinating (RSMHV2) viral strains both in vitro and in vivo. Our results indicate that direct injury of mature oligodendrocytes is an important mechanism of virus-induced demyelination. In vivo, RSA59 infection was identified in spinal cord gray and white matter, but infected oligodendrocytes were restricted to white matter. In contrast, RSMHV2 infection was restricted to gray matter neurons and was not localized to oligodendrocytes. In vitro, RSA59 can infect both oligodendrocyte precursors and differentiated oligodendrocytes, whereas RSMHV2 can infect oligodendrocyte precursors but not differentiated oligodendrocytes. Viral spreading through axonal means to white matter and release of the demyelinating strain MHV at the nerve end is critical for oligodendrocytes infection and subsequent demyelination. Understanding the mechanisms by which known viruses effect demyelination in this animal model has important therapeutic implications in the treatment of human demyelinating disease.