Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Interact Cardiovasc Thorac Surg ; 33(6): 986-991, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34282456

RESUMEN

OBJECTIVES: The liquid-solid interactions have attracted broad interest since solid surfaces can either repel or attract fluids, configuring a wide spectrum of wetting states (from superhydrophilicity to superhydrophobicity). Since the blood-artificial surface interaction of bileaflet mechanical heart valves essentially represents a liquid-solid interaction, we analysed the thrombogenicity of mechanical heart valve prostheses from innovative perspectives. The aim of the present study was to modify the surface wettability of standard St. Jude Medical Regent™ occluders. METHODS: Four pyrolytic carbon occluders were irradiated by means of ultra-short pulse laser, to create 4 different nanotextures (A-D), the essential prerequisite to achieve superhydrophobicity. The static surface wettability of the occluders was qualified by the contact angle (θ) of 2 µl of purified water, using the sessile drop technique. The angle formed between the liquid-solid and the liquid-vapour interface was the contact angle and was obtained by analysing the droplet images captured by a camera. The morphology of the occluders was characterized and analysed by a scanning electron microscope at different magnifications. RESULTS: The scanning electron microscope analysis of the textures revealed 2 different configurations of the pillars since A and B showed well-rounded shaped tops and C and D flat tops. The measured highest contact angles were comprised between 108.1° and 112.7°, reflecting an improved hydrophobicity of the occluders. All the textures exhibited, to different extents, an orientation (horizontal or vertical), which was strictly related to the observed anisotropy. CONCLUSIONS: In this very early phase of our research, we were able to demonstrate that the intrinsic wettability of pyrolytic carbon occluders can be permanently modified, increasing the water repellency.


Asunto(s)
Prótesis Valvulares Cardíacas , Humectabilidad , Humanos , Rayos Láser
2.
Biomed Microdevices ; 14(1): 95-107, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22048776

RESUMEN

This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.


Asunto(s)
Polímeros/química , Ingeniería de Tejidos/métodos , Animales , Línea Celular , Ensayos Analíticos de Alto Rendimiento , Ácido Láctico/química , Ratones , Poliésteres , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA