Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
iScience ; 25(11): 105338, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36325065

RESUMEN

DNA methylation is a key regulator of gene expression and a clinical therapeutic predictor. We examined global DNA methylation beyond the generally used promoter areas in human small cell lung cancer (SCLC) and find that gene body methylation is a robust positive predictor of gene expression. Combining promoter and gene body methylation better predicts gene expression than promoter methylation alone including genes involved in the neuroendocrine classification of SCLC and the expression of therapeutically relevant genes including MGMT, SLFN11, and DLL3. Importantly, for super-enhancer (SE) covered genes such as NEUROD1 or MYC, using H3K27ac and NEUROD1, ASCL1, and POU2F3 ChIP-seq data, we show that genic methylation is inversely proportional to expression, thus providing a new approach to identify potential SE regulated genes involved in SCLC pathogenesis. To advance SCLC transitional research, these data are integrated into our web portal (https://discover.nci.nih.gov/SclcCellMinerCDB/) for open and easy access to basic and clinical investigators.

2.
Nucleic Acids Res ; 50(9): 5111-5128, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35524559

RESUMEN

During routine genome duplication, many potential replication origins remain inactive or 'dormant'. Such origin dormancy is achieved, in part, by an interaction with the metabolic sensor SIRT1 deacetylase. We report here that dormant origins are a group of consistent, pre-determined genomic sequences that are distinguished from baseline (i.e. ordinarily active) origins by their preferential association with two phospho-isoforms of the helicase component MCM2. During normal unperturbed cell growth, baseline origins, but not dormant origins, associate with a form of MCM2 that is phosphorylated by DBF4-dependent kinase (DDK) on serine 139 (pS139-MCM2). This association facilitates the initiation of DNA replication from baseline origins. Concomitantly, SIRT1 inhibits Ataxia Telangiectasia and Rad3-related (ATR)-kinase-mediated phosphorylation of MCM2 on serine 108 (pS108-MCM2) by deacetylating the ATR-interacting protein DNA topoisomerase II binding protein 1 (TOPBP1), thereby preventing ATR recruitment to chromatin. In cells devoid of SIRT1 activity, or challenged by replication stress, this inhibition is circumvented, enabling ATR-mediated S108-MCM2 phosphorylation. In turn, pS108-MCM2 enables DDK-mediated phosphorylation on S139-MCM2 and facilitates replication initiation at dormant origins. These observations suggest that replication origin dormancy and activation are regulated by distinct post-translational MCM modifications that reflect a balance between SIRT1 activity and ATR signaling.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Origen de Réplica , Sirtuina 1 , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
3.
Nat Commun ; 12(1): 3448, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103496

RESUMEN

Safeguards against excess DNA replication are often dysregulated in cancer, and driving cancer cells towards over-replication is a promising therapeutic strategy. We determined DNA synthesis patterns in cancer cells undergoing partial genome re-replication due to perturbed regulatory interactions (re-replicating cells). These cells exhibited slow replication, increased frequency of replication initiation events, and a skewed initiation pattern that preferentially reactivated early-replicating origins. Unlike in cells exposed to replication stress, which activated a novel group of hitherto unutilized (dormant) replication origins, the preferred re-replicating origins arose from the same pool of potential origins as those activated during normal growth. Mechanistically, the skewed initiation pattern reflected a disproportionate distribution of pre-replication complexes on distinct regions of licensed chromatin prior to replication. This distinct pattern suggests that circumventing the strong inhibitory interactions that normally prevent excess DNA synthesis can occur via at least two pathways, each activating a distinct set of replication origins.


Asunto(s)
Replicación del ADN , Origen de Réplica , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ciclopentanos/farmacología , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Genoma Humano , Humanos , Mitosis/efectos de los fármacos , Modelos Biológicos , Pirimidinas/farmacología , Origen de Réplica/genética
4.
Epigenetics Chromatin ; 13(1): 21, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321568

RESUMEN

BACKGROUND: Next-generation sequencing allows genome-wide analysis of changes in chromatin states and gene expression. Data analysis of these increasingly used methods either requires multiple analysis steps, or extensive computational time. We sought to develop a tool for rapid quantification of sequencing peaks from diverse experimental sources and an efficient method to produce coverage tracks for accurate visualization that can be intuitively displayed and interpreted by experimentalists with minimal bioinformatics background. We demonstrate its strength and usability by integrating data from several types of sequencing approaches. RESULTS: We have developed BAMscale, a one-step tool that processes a wide set of sequencing datasets. To demonstrate the usefulness of BAMscale, we analyzed multiple sequencing datasets from chromatin immunoprecipitation sequencing data (ChIP-seq), chromatin state change data (assay for transposase-accessible chromatin using sequencing: ATAC-seq, DNA double-strand break mapping sequencing: END-seq), DNA replication data (Okazaki fragments sequencing: OK-seq, nascent-strand sequencing: NS-seq, single-cell replication timing sequencing: scRepli-seq) and RNA-seq data. The outputs consist of raw and normalized peak scores (multiple normalizations) in text format and scaled bigWig coverage tracks that are directly accessible to data visualization programs. BAMScale also includes a visualization module facilitating direct, on-demand quantitative peak comparisons that can be used by experimentalists. Our tool can effectively analyze large sequencing datasets (~ 100 Gb size) in minutes, outperforming currently available tools. CONCLUSIONS: BAMscale accurately quantifies and normalizes identified peaks directly from BAM files, and creates coverage tracks for visualization in genome browsers. BAMScale can be implemented for a wide set of methods for calculating coverage tracks, including ChIP-seq and ATAC-seq, as well as methods that currently require specialized, separate tools for analyses, such as splice-aware RNA-seq, END-seq and OK-seq for which no dedicated software is available. BAMscale is freely available on github (https://github.com/ncbi/BAMscale).


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , RNA-Seq/métodos , Ensamble y Desensamble de Cromatina , ADN , Roturas del ADN de Doble Cadena , Humanos , Células K562 , Programas Informáticos
5.
Nat Commun ; 11(1): 24, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911655

RESUMEN

The spindle assembly checkpoint (SAC) prevents premature chromosome segregation by inactivating the anaphase promoting complex/cyclosome (APC/C) until all chromosomes are properly attached to mitotic spindles. Here we identify a role for Cullin-RING ubiquitin ligase complex 4 (CRL4), known for modulating DNA replication, as a crucial mitotic regulator that triggers the termination of the SAC and enables chromosome segregation. CRL4 is recruited to chromatin by the replication origin binding protein RepID/DCAF14/PHIP. During mitosis, CRL4 dissociates from RepID and replaces it with RB Binding Protein 7 (RBBP7), which ubiquitinates the SAC mediator BUB3 to enable mitotic exit. During interphase, BUB3 is protected from CRL4-mediated degradation by associating with promyelocytic leukemia (PML) nuclear bodies, ensuring its availability upon mitotic onset. Deficiencies in RepID, CRL4 or RBBP7 delay mitotic exit, increase genomic instability and enhance sensitivity to paclitaxel, a microtubule stabilizer and anti-tumor drug.


Asunto(s)
Anafase , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metafase , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mitosis , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Unión Proteica , Proteolisis , Proteína 7 de Unión a Retinoblastoma/genética , Proteína 7 de Unión a Retinoblastoma/metabolismo , Huso Acromático/metabolismo , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA