Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 568(7751): 254-258, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30842661

RESUMEN

Mitochondrial metabolism is an attractive target for cancer therapy1,2. Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC)1,3. Here we show that BTB and CNC homology1 (BACH1)4, a haem-binding transcription factor that is increased in expression in tumours from patients with TNBC, targets mitochondrial metabolism. BACH1 decreases glucose utilization in the tricarboxylic acid cycle and negatively regulates transcription of electron transport chain (ETC) genes. BACH1 depletion by shRNA or degradation by hemin sensitizes cells to ETC inhibitors such as metformin5,6, suppressing growth of both cell line and patient-derived tumour xenografts. Expression of a haem-resistant BACH1 mutant in cells that express a short hairpin RNA for BACH1 rescues the BACH1 phenotype and restores metformin resistance in hemin-treated cells and tumours7. Finally, BACH1 gene expression inversely correlates with ETC gene expression in tumours from patients with breast cancer and in other tumour types, which highlights the clinical relevance of our findings. This study demonstrates that mitochondrial metabolism can be exploited by targeting BACH1 to sensitize breast cancer and potentially other tumour tissues to mitochondrial inhibitors.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/antagonistas & inhibidores , Hemina/uso terapéutico , Metformina/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ciclo del Ácido Cítrico/fisiología , Transporte de Electrón/genética , Femenino , Glucosa/metabolismo , Hemina/metabolismo , Xenoinjertos , Humanos , Metformina/metabolismo , Ratones , Ratones Desnudos , Mitocondrias/genética , Proteolisis , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Chem Rev ; 118(14): 6893-6923, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-29939018

RESUMEN

Dysregulation of cancer cell metabolism contributes to abnormal cell growth, the biological end point of cancer. We review here numerous affected oncogenes and metabolic pathways common in cancer and how they contribute to cancer pathogenesis and malignancy. This review also discusses various pharmacological manipulations that take advantage of these metabolic abnormalities and the current targeted therapies that have arisen from this research.


Asunto(s)
Neoplasias/metabolismo , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Ácidos Grasos/metabolismo , Humanos , Neoplasias/patología , Neoplasias/terapia , Oncogenes , Vía de Pentosa Fosfato , Proteínas Supresoras de Tumor/metabolismo
3.
Nat Cell Biol ; 20(7): 811-822, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29941929

RESUMEN

G protein αs (GNAS) mediates receptor-stimulated cAMP signalling, which integrates diverse environmental cues with intracellular responses. GNAS is mutationally activated in multiple tumour types, although its oncogenic mechanisms remain elusive. We explored this question in pancreatic tumourigenesis where concurrent GNAS and KRAS mutations characterize pancreatic ductal adenocarcinomas (PDAs) arising from intraductal papillary mucinous neoplasms (IPMNs). By developing genetically engineered mouse models, we show that GnasR201C cooperates with KrasG12D to promote initiation of IPMN, which progress to invasive PDA following Tp53 loss. Mutant Gnas remains critical for tumour maintenance in vivo. This is driven by protein-kinase-A-mediated suppression of salt-inducible kinases (Sik1-3), associated with induction of lipid remodelling and fatty acid oxidation. Comparison of Kras-mutant pancreatic cancer cells with and without Gnas mutations reveals striking differences in the functions of this network. Thus, we uncover Gnas-driven oncogenic mechanisms, identify Siks as potent tumour suppressors, and demonstrate unanticipated metabolic heterogeneity among Kras-mutant pancreatic neoplasms.


Asunto(s)
Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Reprogramación Celular/genética , Cromograninas/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Metabolismo de los Lípidos/genética , Mutación , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Cromograninas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Represión Enzimática , Ácidos Grasos/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes ras , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Mutantes , Ratones Transgénicos , Oxidación-Reducción , Neoplasias Pancreáticas/patología , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Factores de Tiempo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Dev Cell ; 44(1): 97-112.e7, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29275994

RESUMEN

Lipid droplet (LD) functions are regulated by a complement of integral and peripheral proteins that associate with the bounding LD phospholipid monolayer. Defining the composition of the LD proteome has remained a challenge due to the presence of contaminating proteins in LD-enriched buoyant fractions. To overcome this limitation, we developed a proximity labeling strategy that exploits LD-targeted APEX2 to biotinylate LD proteins in living cells. Application of this approach to two different cell types identified the vast majority of previously validated LD proteins, excluded common contaminating proteins, and revealed new LD proteins. Moreover, quantitative analysis of LD proteome dynamics uncovered a role for endoplasmic reticulum-associated degradation in controlling the composition of the LD proteome. These data provide an important resource for future LD studies and demonstrate the utility of proximity labeling to study the regulation of LD proteomes.


Asunto(s)
Biomarcadores/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Gotas Lipídicas/metabolismo , Proteoma/metabolismo , Coloración y Etiquetado/métodos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Proteoma/análisis , Receptores del Factor Autocrino de Motilidad/metabolismo
5.
Cell Chem Biol ; 24(11): 1368-1376.e4, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28919038

RESUMEN

Many natural products that show therapeutic activities are often difficult to synthesize or isolate and have unknown targets, hindering their development as drugs. Identifying druggable hotspots targeted by covalently acting anti-cancer natural products can enable pharmacological interrogation of these sites with more synthetically tractable compounds. Here, we used chemoproteomic platforms to discover that the anti-cancer natural product withaferin A targets C377 on the regulatory subunit PPP2R1A of the tumor-suppressor protein phosphatase 2A (PP2A) complex leading to activation of PP2A activity, inactivation of AKT, and impaired breast cancer cell proliferation. We developed a more synthetically tractable cysteine-reactive covalent ligand, JNS 1-40, that selectively targets C377 of PPP2R1A to impair breast cancer signaling, proliferation, and in vivo tumor growth. Our study highlights the utility of using chemoproteomics to map druggable hotspots targeted by complex natural products and subsequently interrogating these sites with more synthetically tractable covalent ligands for cancer therapy.


Asunto(s)
Antineoplásicos/metabolismo , Productos Biológicos/metabolismo , Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisteína/química , Femenino , Humanos , Ligandos , Células MCF-7 , Proteína Fosfatasa 2/química , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Witanólidos/química , Witanólidos/farmacología
6.
Cell Chem Biol ; 23(5): 567-578, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27185638

RESUMEN

Breast cancers possess fundamentally altered metabolism that fuels their pathogenicity. While many metabolic drivers of breast cancers have been identified, the metabolic pathways that mediate breast cancer malignancy and poor prognosis are less well understood. Here, we used a reactivity-based chemoproteomic platform to profile metabolic enzymes that are enriched in breast cancer cell types linked to poor prognosis, including triple-negative breast cancer (TNBC) cells and breast cancer cells that have undergone an epithelial-mesenchymal transition-like state of heightened malignancy. We identified glutathione S-transferase Pi 1 (GSTP1) as a novel TNBC target that controls cancer pathogenicity by regulating glycolytic and lipid metabolism, energetics, and oncogenic signaling pathways through a protein interaction that activates glyceraldehyde-3-phosphate dehydrogenase activity. We show that genetic or pharmacological inactivation of GSTP1 impairs cell survival and tumorigenesis in TNBC cells. We put forth GSTP1 inhibitors as a novel therapeutic strategy for combatting TNBCs through impairing key cancer metabolism and signaling pathways.


Asunto(s)
Gutatión-S-Transferasa pi/metabolismo , Leucina/análogos & derivados , Triazinas/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Gutatión-S-Transferasa pi/antagonistas & inhibidores , Gutatión-S-Transferasa pi/genética , Humanos , Leucina/química , Leucina/farmacología , Ratones , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Relación Estructura-Actividad , Triazinas/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA