Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Elife ; 112022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913117

RESUMEN

Animals must learn through experience which foods are nutritious and should be consumed, and which are toxic and should be avoided. Enteroendocrine cells (EECs) are the principal chemosensors in the GI tract, but investigation of their role in behavior has been limited by the difficulty of selectively targeting these cells in vivo. Here, we describe an intersectional genetic approach for manipulating EEC subtypes in behaving mice. We show that multiple EEC subtypes inhibit food intake but have different effects on learning. Conditioned flavor preference is driven by release of cholecystokinin whereas conditioned taste aversion is mediated by serotonin and substance P. These positive and negative valence signals are transmitted by vagal and spinal afferents, respectively. These findings establish a cellular basis for how chemosensing in the gut drives learning about food.


Asunto(s)
Células Enteroendocrinas , Alimentos , Animales , Colecistoquinina/metabolismo , Células Enteroendocrinas/metabolismo , Preferencias Alimentarias , Ratones , Recompensa , Gusto
2.
Nature ; 608(7922): 374-380, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35831501

RESUMEN

Food and water are rewarding in part because they satisfy our internal needs1,2. Dopaminergic neurons in the ventral tegmental area (VTA) are activated by gustatory rewards3-5, but how animals learn to associate these oral cues with the delayed physiological effects of ingestion is unknown. Here we show that individual dopaminergic neurons in the VTA respond to detection of nutrients or water at specific stages of ingestion. A major subset of dopaminergic neurons tracks changes in systemic hydration that occur tens of minutes after thirsty mice drink water, whereas different dopaminergic neurons respond to nutrients in the gastrointestinal tract. We show that information about fluid balance is transmitted to the VTA by a hypothalamic pathway and then re-routed to downstream circuits that track the oral, gastrointestinal and post-absorptive stages of ingestion. To investigate the function of these signals, we used a paradigm in which a fluid's oral and post-absorptive effects can be independently manipulated and temporally separated. We show that mice rapidly learn to prefer one fluid over another based solely on its rehydrating ability and that this post-ingestive learning is prevented if dopaminergic neurons in the VTA are selectively silenced after consumption. These findings reveal that the midbrain dopamine system contains subsystems that track different modalities and stages of ingestion, on timescales from seconds to tens of minutes, and that this information is used to drive learning about the consequences of ingestion.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Hipotálamo , Vías Nerviosas , Nutrientes , Estado de Hidratación del Organismo , Área Tegmental Ventral , Animales , Señales (Psicología) , Digestión , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Ingestión de Alimentos , Tracto Gastrointestinal/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones , Nutrientes/metabolismo , Estado de Hidratación del Organismo/efectos de los fármacos , Recompensa , Factores de Tiempo , Área Tegmental Ventral/citología , Área Tegmental Ventral/fisiología , Agua/metabolismo , Agua/farmacología , Equilibrio Hidroelectrolítico
3.
Front Cell Dev Biol ; 9: 653305, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055784

RESUMEN

The developing retina expresses multiple bHLH transcription factors. Their precise functions and interactions in uncommitted retinal progenitors remain to be fully elucidated. Here, we investigate the roles of bHLH factors ATOH7 and Neurog2 in human ES cell-derived retinal organoids. Single cell transcriptome analyses identify three states of proliferating retinal progenitors: pre-neurogenic, neurogenic, and cell cycle-exiting progenitors. Each shows different expression profile of bHLH factors. The cell cycle-exiting progenitors feed into a postmitotic heterozygous neuroblast pool that gives rise to early born neuronal lineages. Elevating ATOH7 or Neurog2 expression accelerates the transition from the pre-neurogenic to the neurogenic state, and expands the exiting progenitor and neuroblast populations. In addition, ATOH7 and Neurog2 significantly, yet differentially, enhance retinal ganglion cell and cone photoreceptor production. Moreover, single cell transcriptome analyses reveal that ATOH7 and Neurog2 each assert positive autoregulation, and both suppress key bHLH factors associated with the pre-neurogenic and states and elevate bHLH factors expressed by exiting progenitors and differentiating neuroblasts. This study thus provides novel insight regarding how ATOH7 and Neurog2 impact human retinal progenitor behaviors and neuroblast fate choices.

4.
Front Cell Neurosci ; 14: 595064, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328894

RESUMEN

How neurons in the eye feed signals back to photoreceptors to optimize sensitivity to patterns of light appears to be mediated by one or more unconventional mechanisms. Via these mechanisms, horizontal cells control photoreceptor synaptic gain and enhance key aspects of temporal and spatial center-surround receptive field antagonism. After the transduction of light energy into an electrical signal in photoreceptors, the next key task in visual processing is the transmission of an optimized signal to the follower neurons in the retina. For this to happen, the release of the excitatory neurotransmitter glutamate from photoreceptors is carefully regulated via horizontal cell feedback, which acts as a thermostat to keep the synaptic transmission in an optimal range during changes to light patterns and intensities. Novel findings of a recently described model that casts a classical neurotransmitter system together with ion transport mechanisms to adjust the alkaline milieu outside the synapse are reviewed. This novel inter-neuronal messaging system carries feedback signals using two separate, but interwoven regulated systems. The complex interplay between these two signaling modalities, creating synaptic modulation-at-a-distance, has obscured it's being defined. The foundations of our understanding of the feedback mechanism from horizontal cells to photoreceptors have been long established: Horizontal cells have broad receptive fields, suitable for providing surround inhibition, their membrane potential, a function of stimulus intensity and size, regulates inhibition of photoreceptor voltage-gated Ca2+ channels, and strong artificial pH buffering eliminates this action. This review compares and contrasts models of how these foundations are linked, focusing on a recent report in mammals that shows tonic horizontal cell release of GABA activating Cl- and HCO3 - permeable GABA autoreceptors. The membrane potential of horizontal cells provides the driving force for GABAR-mediated HCO3 - efflux, alkalinizing the cleft when horizontal cells are hyperpolarized by light or adding to their depolarization in darkness and contributing to cleft acidification via NHE-mediated H+ efflux. This model challenges interpretations of earlier studies that were considered to rule out a role for GABA in feedback to cones.

5.
PLoS Biol ; 17(4): e3000200, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30933967

RESUMEN

The stream of visual information sent from photoreceptors to second-order bipolar cells is intercepted by laterally interacting horizontal cells that generate feedback to optimize and improve the efficiency of signal transmission. The mechanisms underlying the regulation of graded photoreceptor synaptic output in this nonspiking network have remained elusive. Here, we analyze with patch clamp recording the novel mechanisms by which horizontal cells control pH in the synaptic cleft to modulate photoreceptor neurotransmitter release. First, we show that mammalian horizontal cells respond to their own GABA release and that the results of this autaptic action affect cone voltage-gated Ca2+ channel (CaV channel) gating through changes in pH. As a proof-of-principle, we demonstrate that chemogenetic manipulation of horizontal cells with exogenous anion channel expression mimics GABA-mediated cone CaV channel inhibition. Activation of these GABA receptor anion channels can depolarize horizontal cells and increase cleft acidity via Na+/H+ exchanger (NHE) proton extrusion, which results in inhibition of cone CaV channels. This action is effectively counteracted when horizontal cells are sufficiently hyperpolarized by increased GABA receptor (GABAR)-mediated HCO3- efflux, alkalinizing the cleft and disinhibiting cone CaV channels. This demonstrates how hybrid actions of GABA operate in parallel to effect voltage-dependent pH changes, a novel mechanism for regulating synaptic output.


Asunto(s)
Células Fotorreceptoras de Vertebrados/fisiología , Células Horizontales de la Retina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología , Animales , Canales de Calcio/metabolismo , Retroalimentación , Retroalimentación Fisiológica/fisiología , Femenino , Cobayas , Concentración de Iones de Hidrógeno , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de GABA/metabolismo , Retina/citología , Retina/metabolismo , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Horizontales de la Retina/fisiología , Transducción de Señal/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
6.
Neuron ; 95(4): 914-927.e4, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28781167

RESUMEN

Compartmentalized signaling in dendritic subdomains is critical for the function of many central neurons. In the retina, individual dendritic sectors of a starburst amacrine cell (SAC) are preferentially activated by different directions of linear motion, indicating limited signal propagation between the sectors. However, the mechanism that regulates this propagation is poorly understood. Here, we find that metabotropic glutamate receptor 2 (mGluR2) signaling, which acts on voltage-gated calcium channels in SACs, selectively restricts cross-sector signal propagation in SACs, but does not affect local dendritic computation within individual sectors. mGluR2 signaling ensures sufficient electrotonic isolation of dendritic sectors to prevent their depolarization during non-preferred motion, yet enables controlled multicompartmental signal integration that enhances responses to preferred motion. Furthermore, mGluR2-mediated dendritic compartmentalization in SACs is important for the functional output of direction-selective ganglion cells (DSGCs). Therefore, our results directly link modulation of dendritic compartmentalization to circuit-level encoding of motion direction in the retina.


Asunto(s)
Células Amacrinas/citología , Células Amacrinas/fisiología , Dendritas/fisiología , Percepción de Movimiento/fisiología , Retina/citología , Transducción de Señal/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Aminoácidos/farmacología , Animales , Animales Recién Nacidos , Cloruro de Cadmio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Dendritas/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estimulación Luminosa , Receptores AMPA/genética , Receptores AMPA/metabolismo , Retina/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Xantenos/farmacología , omega-Conotoxina GVIA/farmacología
7.
J Neurophysiol ; 116(2): 686-97, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27193322

RESUMEN

Horizontal cells form the first laterally interacting network of inhibitory interneurons in the retina. Dopamine released onto horizontal cells under photic and circadian control modulates horizontal cell function. Using isolated, identified horizontal cells from a connexin-57-iCre × ROSA26-tdTomato transgenic mouse line, we investigated dopaminergic modulation of calcium channel currents (ICa) with whole cell patch-clamp techniques. Dopamine (10 µM) blocked 27% of steady-state ICa, an action blunted to 9% in the presence of the L-type Ca channel blocker verapamil (50 µM). The dopamine type 1 receptor (D1R) agonist SKF38393 (20 µM) inhibited ICa by 24%. The D1R antagonist SCH23390 (20 µM) reduced dopamine and SKF38393 inhibition. Dopamine slowed ICa activation, blocking ICa by 38% early in a voltage step. Enhanced early inhibition of ICa was eliminated by applying voltage prepulses to +120 mV for 100 ms, increasing ICa by 31% and 11% for early and steady-state currents, respectively. Voltage-dependent facilitation of ICa and block of dopamine inhibition after preincubation with a Gßγ-blocking peptide suggested involvement of Gßγ proteins in the D1R-mediated modulation. When the G protein activator guanosine 5'-O-(3-thiotriphosphate) (GTPγS) was added intracellularly, ICa was smaller and showed the same slowed kinetics seen during D1R activation. With GTPγS in the pipette, additional block of ICa by dopamine was only 6%. Strong depolarizing voltage prepulses restored the GTPγS-reduced early ICa amplitude by 36% and steady-state ICa amplitude by 3%. These results suggest that dopaminergic inhibition of ICa via D1Rs is primarily mediated through the action of Gßγ proteins in horizontal cells.


Asunto(s)
Canales de Calcio/fisiología , Potenciales de la Membrana/fisiología , Receptores de Dopamina D1/metabolismo , Células Horizontales de la Retina/fisiología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Conexinas/genética , Conexinas/metabolismo , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Retina/citología , Células Horizontales de la Retina/efectos de los fármacos , Espiperona/farmacología , omega-Conotoxina GVIA/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA