Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Food Microbiol ; 122: 104528, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839212

RESUMEN

Human milk is considered the most suitable source of nutrition for infants. Donor human milk from human milk banks (HMB) is recommended as the best alternative for infants whose mothers' own milk is unavailable. Microbiological screening of milk donated to HMB is important to ensure the quality and safety of the pasteurised human milk. This article describes the microbiological status of human milk donated to the Regional Human Milk Bank in Torun, Poland. Statistical data regarding the microbiological analysis of milk from 292 donors were collected in the years 2013-2021. Total of 538 milk samples were tested. Only in 6% of human milk samples the bacteria level was above the required standard and/or the milk had potentially pathogenic bacteria. The main core of donors' breastmilk bacteria represents the skin microbiota, and the composition of the microbiota is strictly related to the surrounding environment. The most abundant genera detected in milk samples were the Staphylococcus group. Prolonged hospitalisation of infants' mothers and/or offsprings is associated with potentially pathogenic bacteria colonization in milk. The use of the modern identification method MALDI-TOF resulted in more accurate results compared to the biochemical methods. Our analysis indicates that most of the tested milk samples (94%), both expressing at home and in hospital environments, meet the criteria for admission to the human milk bank. Effective techniques for identifying microorganisms ensure that donor milk from human milk banks meets the guidelines set for these units.


Asunto(s)
Bacterias , Bancos de Leche Humana , Leche Humana , Humanos , Leche Humana/microbiología , Polonia , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Femenino , Adulto , Microbiota , Lactante , Adulto Joven
2.
BMC Microbiol ; 23(1): 259, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37716959

RESUMEN

BACKGROUND: Listeria monocytogenes are Gram-positive rods, widespread in the environment due to their wide tolerance to changing conditions. The apilot study aimed to assess the impact of six various stresses (heat, cold, osmotic, acid, alkali, frozen) on phenotypic features: MIC of antibiotics (penicillin, ampicillin, meropenem, erythromycin, co-trimoxazole; gradient stripes), motility, ability to form a biofilm (crystal violet method) and growth rate (OD and quantitative method), expression level of sigB (stress induced regulator of genes), agrA, agrB (associated with biofilm formation) and lmo2230, lmo0596 (acid and alkali stress) (qPCR) for three strains of L. monocytogenes. RESULTS: Applied stress conditions contributed to changes in phenotypic features and expression levels of sigB, agrA, agrB, lmo2230 and lmo0596. Stress exposure increased MIC value for penicillin (ATCC 19111 - alkaline stress), ampicillin (472CC - osmotic, acid, alkaline stress), meropenem (strains: 55 C - acid, alkaline, o smotic, frozen stress; 472CC - acid, alkaline stress), erythromycin (strains: 55 C - acid stress; 472CC - acid, alkaline, osmotic stress; ATCC 19111 - osmotic, acid, alkaline, frozen stress), co-trimoxazole (strains: 55 C - acid stress; ATCC 19111 - osmotic, acid, alkaline stress). These changes, however, did not affect antibiotic susceptibility. The strain 472CC (a moderate biofilm former) increased biofilm production after exposure to all stress factors except heat and acid. The ATCC 19111 (a weak producer) formed moderate biofilm under all studied conditions except cold and frozen stress, respectively. The strain 55 C became a strong biofilm producer after exposure to cold and produced a weak biofilm in response to frozen stress. Three tested strains had lower growth rate (compared to the no stress variant) after exposure to heat stress. It has been found that the sigB transcript level increased under alkaline (472CC) stress and the agrB expression increased under cold, osmotic (55 C, 472CC), alkali and frozen (472CC) stress. In contrast, sigB transcript level decreased in response to acid and frozen stress (55 C), lmo2230 transcript level after exposure to acid and alkali stress (ATCC 19111), and lmo0596 transcript level after exposure to acid stress (ATCC 19111). CONCLUSIONS: Environmental stress changes the ability to form a biofilm and the MIC values of antibiotics and affect the level of expression of selected genes, which may increase the survival and virulence of L. monocytogenes. Further research on a large L. monocytogenes population is needed to assess the molecular mechanism responsible for the correlation of antibiotic resistance, biofilm formation and resistance to stress factors.


Asunto(s)
Listeria monocytogenes , Listeria monocytogenes/genética , Proyectos Piloto , Meropenem , Combinación Trimetoprim y Sulfametoxazol , Antibacterianos/farmacología , Ampicilina/farmacología , Álcalis , Eritromicina
3.
BMC Microbiol ; 23(1): 232, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612609

RESUMEN

Zoonoses represent a major challenge for many disciplines, including microbiology, epidemiology, veterinary, medicine and ecology. Moreover, they pose severe risks to human health and economy. In this editorial, we invite contributions to a BMC Microbiology collection on 'Zoonoses and emerging pathogens', covering research on the pathogenesis, identification, treatment and control of zoonoses.


Asunto(s)
Ecología , Zoonosis , Humanos , Animales , Zoonosis/epidemiología
4.
Antibiotics (Basel) ; 12(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37237783

RESUMEN

Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are ß-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.

6.
BMC Microbiol ; 23(1): 89, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997857

RESUMEN

BACKGROUND: Enteroccocus spp. are human opportunistic pathogens causing a variety of serious and life-threating infections in humans, including urinary tract infection, endocarditis, skin infection and bacteraemia. Farm animals and direct contact with them are important sources of Enterococcus faecalis (EFA) and Enterococcus faecium (EFM) infections among farmers, veterinarians and individuals working in breeding farms and abattoirs. The spread of antibiotic-resistant strains is one of the most serious public health concerns, as clinicians will be left without therapeutic options for the management of enterococcal infections. The aim of the study was to evaluate the occurrence and antimicrobial susceptibility of EFA and EFM strains isolated from a pig farm environment and to determine the biofilm formation ability of identified Enterococcus spp. strains. RESULTS: A total numer of 160 enterococcal isolates were obtained from 475 samples collected in total (33.7%). Among them, 110 of genetically different strains were identified and classified into EFA (82; 74.5%) and EFM (28; 25.5%). Genetic similarity analysis revealed the presence of 7 and 1 clusters among the EFA and EFM strains, respectively. The highest percentage of EFA strains (16; 19.5%) was resistant to high concentrations of gentamicin. Among the EFM strains, the most frequent strains were resistant to ampicillin and high concentrations of gentamicin (5 each; 17.9%). Six (7.3%) EFA and 4 (14.3%) EFM strains showed vancomycin resistance (VRE - Vancomycin-Resistant Enterococcus). Linezolid resistance was found in 2 strains of each species. The multiplex PCR analysis was performed to identify the vancomycin resistant enterococci. vanB, vanA and vanD genotypes were detected in 4, 1 and 1 EFA strains, respectively. Four EFA VRE-strains in total, 2 with the vanA and 2 with the vanB genotypes, were identified. The biofilm analysis revealed that all vancomycin-resistant E. faecalis and E. faecium strains demonstrated a higher biofilm-forming capacity, as compared to the susceptible strains. The lowest cell count (5.31 log CFU / cm2) was reisolated from the biofilm produced by the vancomycin-sensitive strain EFM 2. The highest level of re-isolated cells was observed for VRE EFA 25 and VRE EFM 7 strains, for which the number was 7 log CFU / cm2 and 6.75 log CFU / cm2, respectively. CONCLUSIONS: The irrational use of antibiotics in agriculture and veterinary practice is considered to be one of the key reasons for the rapid spread of antibiotic resistance among microorganisms. Owing to the fact that piggery environment can be a reservoir of antimicrobial resistance and transmission route of antimicrobial resistance genes from commensal zoonotic bacteria to clinical strains, it is of a great importance to public health to monitor trends in this biological phenomenon.


Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Humanos , Animales , Porcinos , Vancomicina , Granjas , Polonia/epidemiología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Enterococcus faecalis , Resistencia a la Vancomicina , Gentamicinas , Biopelículas , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/veterinaria , Infecciones por Bacterias Grampositivas/tratamiento farmacológico
7.
BMC Microbiol ; 23(1): 27, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36690941

RESUMEN

BACKGROUND: Listeria monocytogenes are Gram-positive rods, which are the etiological factor of listeriosis. L. monocytogenes quickly adapts to changing environmental conditions. Since the main source of rods is food, its elimination from the production line is a priority. The study aimed to evaluate the influence of selected stress factors on the growth and survival of L. monocytogenes strains isolated from food products and clinical material. RESULTS: We distinguished fifty genetically different strains of L. monocytogenes (PFGE method). Sixty-two percent of the tested strains represented 1/2a-3a serogroup. Sixty percent of the rods possessed ten examined virulence genes (fbpA, plcA, hlyA, plcB, inlB, actA, iap, inlA, mpl, prfA). Listeria Pathogenicity Island 1 (LIPI-1) was demonstrated among 38 (76.0%) strains. Majority (92.0%) of strains (46) were sensitive to all examined antibiotics. The most effective concentration of bacteriophage (inhibiting the growth of 22 strains; 44.0%) was 5 × 108 PFU. In turn, the concentration of 8% of NaCl was enough to inhibit the growth of 31 strains (62.0%). The clinical strain tolerated the broadest pH range (3 to 10). Five strains survived the 60-min exposure to 70˚C, whereas all were alive at each time stage of the cold stress experiment. During the stress of cyclic freezing-defrosting, an increase in the number of bacteria was shown after the first cycle, and a decrease was only observed after cycle 3. The least sensitive to low nutrients content were strains isolated from frozen food. The high BHI concentration promoted the growth of all groups. CONCLUSIONS: Data on survival in stress conditions can form the basis for one of the hypotheses explaining the formation of persistent strains. Such studies are also helpful for planning appropriate hygiene strategies within the food industry.


Asunto(s)
Listeria monocytogenes , Listeriosis , Humanos , Microbiología de Alimentos , Listeriosis/microbiología , Virulencia/genética , Factores de Virulencia/genética , Proteínas Bacterianas/genética
8.
Front Cell Infect Microbiol ; 12: 1005085, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506026

RESUMEN

Introduction: This study aimed to identify the characteristics of Campylobacter isolated from wild birds (Black-headed gulls Chroicocephalus ridibundus and Great tits Parus major) and collect surface water samples (from rivers, ponds, ornamental lakes, freshwater beaches). Research material included 33 Campylobacter isolates. All the strains were isolated by different monitoring and surveillance plans. Methods: The prevalence of selected genes (flaA, cadF, iam, cdtB, wlaN, sodB, tet0) encoding virulence factors and resistance among Campylobacter spp. was assessed by the PCR method. The genetic similarities of isolates were determined by Pulsed-Field Gel Electrophoresis (PFGE). The susceptibility of Campylobacter isolates to clinically important antimicrobials: erythromycin, tetracycline, and ciprofloxacin, previously assessed by E-test, was presented in the form of drug susceptibility profiles depending on the origin of the isolates. Results: The cadF, flaA, cdtB, and sodB genes exhibited the highest detection rate. Statistically significant differences between the presence of wlaN virulence genes were noted among different species of the isolates. No genetically identical isolates were found. The most numerous antibiotic susceptibility profile included strains susceptible to all antibiotics studied (profile A-33.3%). The second most common were the tetracycline - and ciprofloxacin-resistant (profile B-27.2%), and tetracycline-resistant profile (C-24.2%) respectively. Discussion: The study revealed the virulent properties of Campylobacter isolated from water samples, and wild birds, and high resistance rates to tetracycline, and fluoroquinolones. The lack of genetic relatedness among strains isolated from water, and birds may indicate other sources of surface water contamination with Campylobacter bacteria than birds. The presence of Campylobacter spp. in wild birds could also have other environmental origins.


Asunto(s)
Campylobacter , Animales , Campylobacter/genética , Agua , Aves , Virulencia/genética , Tetraciclina , Ciprofloxacina/farmacología , Antibacterianos/farmacología
9.
Antibiotics (Basel) ; 11(12)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36551406

RESUMEN

Urinary Tract Infections (UTIs) are common outpatient and inpatient infections, often treated with empirical therapy. Enterococcus spp. is responsible for about 10% of UTIs. This study aimed to determine the necessity of changing the empirical treatment of UTIs caused by Enterococcus spp. The evaluation was performed for 542 Enterococcus strains isolated from urine samples in the years 2016-2021. We identified three Enterococcus species that were found: E. faecalis (389, 71.8%), E. faecium (151, 27.8%) and E. gallinarum (2, 0.4%). E. faecalis was the dominant species every year. Among E. faecalis, the most prevalent was resistance to norfloxacin (51.4%). Almost all E. faecium strains (150, 99.3%) were resistant to beta-lactams and norfloxacin. Eighty-three strains (55.0%) were resistant to vancomycin and 72 (47.7%) to teicoplanin. E. faecium strains showed a significantly higher percentage of resistance mechanisms GRE (Glicopeptide-Resistant Enterococcus) (72, 48.7%) and VRE (Vancomycin-Resistant Enterococcus) (11, 7.3%), while only five strains of E. feacalis showed a VRE mechanism (1.3%). In the therapy of E. faecalis UTIs, ampicillin and imipenem still remain effective. However, the above-mentioned antibiotics, as well as fluoroquinolones, are not recommended in the treatment of UTIs of E. faecium etiology.

10.
Foods ; 11(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36010451

RESUMEN

Three Salmonella enterica strains were used in the study (serovars: S. enteritidis, S. typhimurim and S. virchow). This study evaluated the efficacy of radiant catalytic ionization (RCI) and ozonation against Salmonella spp. on eggshell (expressed as log CFU/egg). The egg surface was contaminated three different bacterial suspension (103 CFU/mL, 105 CFU/mL and 108 CFU/mL) with or without poultry manure. Experiments were conducted at 4 °C and 20 °C in three different time period: 30 min, 60 min and 120 min. Treatment with RCI reduced Salmonella numbers from 0.26 log CFU/egg in bacterial suspension 108 CFU/mL, 4 °C and 20 °C, with manure for 30 min to level decrease in bacteria number below the detection limit (BDL) in bacterial suspension 105 CFU/mL, 20 °C, with or without manure for 120 min. The populations of Salmonella spp. on eggs treated by ozonizer ranged from 0.20 log CFU/egg in bacteria suspension 108 CFU/mL, 20 °C, with manure for 30 min to 2.73 log CFU/egg in bacterial suspension 105 CFU/mL, 20 °C, with manure for 120 min. In all treatment conditions contamination with poultry manure decrease effectiveness the RCI and ozonation. In summary, RCI technology shows similar effectiveness to the ozonation, but it is safer for poultry plant workers and consumers.

11.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887166

RESUMEN

Stress and anxiety are common phenomena that contribute to many nervous system dysfunctions. More and more research has been focusing on the importance of the gut-brain axis in the course and treatment of many diseases, including nervous system disorders. This review aims to present current knowledge on the influence of psychobiotics on the gut-brain axis based on selected diseases, i.e., Alzheimer's disease, Parkinson's disease, depression, and autism spectrum disorders. Analyses of the available research results have shown that selected probiotic bacteria affect the gut-brain axis in healthy people and people with selected diseases. Furthermore, supplementation with probiotic bacteria can decrease depressive symptoms. There is no doubt that proper supplementation improves the well-being of patients. Therefore, it can be concluded that the intestinal microbiota play a relevant role in disorders of the nervous system. The microbiota-gut-brain axis may represent a new target in the prevention and treatment of neuropsychiatric disorders. However, this topic needs more research. Such research could help find effective treatments via the modulation of the intestinal microbiome.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Probióticos , Bacterias , Encéfalo , Microbioma Gastrointestinal/fisiología , Humanos , Enfermedades del Sistema Nervioso/microbiología , Enfermedades del Sistema Nervioso/terapia , Enfermedad de Parkinson/terapia , Probióticos/uso terapéutico
12.
Antioxidants (Basel) ; 11(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35883738

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still spreading worldwide. For this reason, new treatment methods are constantly being researched. Consequently, new and already-known preparations are being investigated to potentially reduce the severe course of coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection induces the production of pro-inflammatory cytokines and acute serum biomarkers in the host organism. In addition to antiviral drugs, there are other substances being used in the treatment of COVID-19, e.g., those with antioxidant properties, such as vitamin C (VC). Exciting aspects of the use of VC in antiviral therapy are its antioxidant and pro-oxidative abilities. In this review, we summarized both the positive effects of using VC in treating infections caused by SARS-CoV-2 in the light of the available research. We have tried to answer the question as to whether the use of high doses of VC brings the expected benefits in the treatment of COVID-19 and whether such treatment is the correct therapeutic choice. Each case requires individual assessment to determine whether the positives outweigh the negatives, especially in the light of populational studies concerning the genetic differentiation of genes encoding the solute carriers responsible forVC adsorption. Few data are available on the influence of VC on the course of SARS-CoV-2 infection. Deducing from already-published data, high-dose intravenous vitamin C (HDIVC) does not significantly lower the mortality or length of hospitalization. However, some data prove, among other things, its impact on the serum levels of inflammatory markers. Finally, the non-positive effect of VC administration is mainly neutral, but the negative effect is that it can result in urinary stones or nephropathies.

13.
J Med Virol ; 94(10): 4599-4610, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35655326

RESUMEN

Historically, passive immunotherapy is an approved approach for protecting and treating humans against various diseases when other alternative therapeutic options are unavailable. Human polyclonal antibodies (hpAbs) can be made from convalescent human donor serum, although it is considered limited due to pandemics and the urgent requirement. Additionally, polyclonal antibodies (pAbs) could be generated from animals, but they may cause severe immunoreactivity and, once "humanized," may have lower neutralization efficiency. Transchromosomic bovines (TcBs) have been developed to address these concerns by creating robust neutralizing hpAbs, which are useful in preventing and/or curing human infections in response to hyperimmunization with vaccines holding adjuvants and/or immune stimulators over an extensive period. Unlike other animal-derived pAbs, potent hpAbs could be promptly produced from TcB in large amounts to assist against an outbreak scenario. Some of these highly efficacious TcB-derived antibodies have already neutralized and blocked diseases in clinical studies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has numerous variants classified into variants of concern (VOCs), variants of interest (VOIs), and variants under monitoring. Although these variants possess different mutations, such as N501Y, E484K, K417N, K417T, L452R, T478K, and P681R, SAB-185 has shown broad neutralizing activity against VOCs, such as Alpha, Beta, Gamma, Delta, and Omicron variants, and VOIs, such as Epsilon, Iota, Kappa, and Lambda variants. This article highlights recent developments in the field of bovine-derived biotherapeutics, which are seen as a practical platform for developing safe and effective antivirals with broad activity, particularly considering emerging viral infections such as SARS-CoV-2, Ebola, Middle East respiratory syndrome coronavirus, Zika, human immunodeficiency virus type 1, and influenza A virus. Antibodies in the bovine serum or colostrum, which have been proved to be more protective than their human counterparts, are also reviewed.


Asunto(s)
COVID-19 , VIH-1 , Fiebre Hemorrágica Ebola , Virus de la Influenza A , Coronavirus del Síndrome Respiratorio de Oriente Medio , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/uso terapéutico , Anticuerpos ampliamente neutralizantes , COVID-19/terapia , Humanos , Inmunoglobulina G , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
14.
Front Microbiol ; 13: 845166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330774

RESUMEN

In underdeveloped and developing countries, due to poverty, fermentation is one of the most widely used preservation methods. It not only allows extending the shelf life of food, but also brings other benefits, including inhibiting the growth of pathogenic microorganisms, improving the organoleptic properties and product digestibility, and can be a valuable source of functional microorganisms. Today, there is a great interest in functional strains, which, in addition to typical probiotic strains, can participate in the treatment of numerous diseases, disorders of the digestive system, but also mental diseases, or stimulate our immune system. Hence, fermented foods and beverages are not only a part of the traditional diet, e.g., in Africa but also play a role in the nutrition of people around the world. The fermentation process for some products occurs spontaneously, without the use of well-defined starter cultures, under poorly controlled or uncontrolled conditions. Therefore, while this affordable technology has many advantages, it can also pose a potential health risk. The use of poor-quality ingredients, inadequate hygiene conditions in the manufacturing processes, the lack of standards for safety and hygiene controls lead to the failure food safety systems implementation, especially in low- and middle-income countries or for small-scale products (at household level, in villages and scale cottage industries). This can result in the presence of pathogenic microorganisms or their toxins in the food contributing to cases of illness or even outbreaks. Also, improper processing and storage, as by well as the conditions of sale affect the food safety. Foodborne diseases through the consumption of traditional fermented foods are not reported frequently, but this may be related, among other things, to a low percentage of people entering healthcare care or weaknesses in foodborne disease surveillance systems. In many parts of the world, especially in Africa and Asia, pathogens such as enterotoxigenic and enterohemorrhagic Escherichia coli, Shigella spp., Salmonella spp., enterotoxigenic Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus have been detected in fermented foods. Therefore, this review, in addition to the positive aspects, presents the potential risk associated with the consumption of this type of products.

15.
Front Microbiol ; 13: 1061223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699600

RESUMEN

Bivalve shellfish consumption (ark shells, clams, cockles, and oysters) has increased over the last decades. Following this trend, infectious disease outbreaks associated with their consumption have been reported more frequently. Molluscs are a diverse group of organisms found wild and farmed. They are common on our tables, but unfortunately, despite their great taste, they can also pose a threat as a potential vector for numerous species of pathogenic microorganisms. Clams, in particular, might be filled with pathogens because of their filter-feeding diet. This specific way of feeding favors the accumulation of excessive amounts of pathogenic microorganisms like Vibrio spp., including Vibrio cholerae and V. parahaemolyticus, Pseudomonas aeruginosa, Escherichia coli, Arcobacter spp., and fecal coliforms, and intestinal enterococci. The problems of pathogen dissemination and disease outbreaks caused by exogenous bacteria in many geographical regions quickly became an unwanted effect of globalized food supply chains, global climate change, and natural pathogen transmission dynamics. Moreover, some pathogens like Shewanella spp., with high zoonotic potential, are spreading worldwide along with food transport. These bacteria, contained in food, are also responsible for the potential transmission of antibiotic-resistance genes to species belonging to the human microbiota. Finally, they end up in wastewater, thus colonizing new areas, which enables them to introduce new antibiotic-resistance genes (ARG) into the environment and extend the existing spectrum of ARGs already present in local biomes. Foodborne pathogens require modern methods of detection. Similarly, detecting ARGs is necessary to prevent resistance dissemination in new environments, thus preventing future outbreaks, which could threaten associated consumers and workers in the food processing industry.

16.
Int J Environ Health Res ; 32(8): 1868-1887, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33926318

RESUMEN

Multi-drug resistant pathogens are a global problem. Flies are a potential vector of multi-drug resistant pathogens, which can be particularly dangerous in the hospital environment. This study aimed to evaluate flies as vectors of alert pathogens. The research material consisted of 100 flies (Musca domestica (46.0%), Lucilia sericata (28.0%), and Calliphora vicina (26.0%)) collected at the University Hospital No. 1 dr. A. Jurasz in Bydgoszcz (Poland) in 2018-2019 (summer months). The presence of bacteria of the genera: Enterococcus, Staphylococcus, Escherichia, Leclercia, Citrobacter, Hafnia, Providencia, Proteus, Enterobacter, Klebsiella, Raoultella, Morganella, Moellerella, Bordetella, Pantoea, Serratia, Plesiomonas, Wohlfahrimonas, and Lelliottia was confirmed. The most frequently isolated species included: Enterococcus faecalis (n = 64), Escherichia coli (n = 43) and Moellerella wisconsensis (n = 24). The infection rate and antibiotic resistance of bacteria were assessed. One strain of Proteus mirabilis (isolated from Calliphora vicina) produced ESBLs (extended-spectrum beta-lactamases). The infection rate was 0.38%, 0.26%, and 0.20% for Musca domestica, Lucilia sericata, and Calliphora vicina, respectively. The flies from a hospital area were not a vector of alert pathogens. Monitoring flies as potential vectors of pathogens is an important aspect of public health, especially for hospitalized patients.


Asunto(s)
Dípteros , Moscas Domésticas , Animales , Bacterias , Enterobacteriaceae , Escherichia coli , Hospitales , Moscas Domésticas/microbiología , Humanos
17.
Vaccines (Basel) ; 9(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34960148

RESUMEN

(1) Background: In many infections, antibodies play a crucial role in controlling infection. In COVID-19, the dynamics of the immune system response to SARS-CoV-2 is not fully understood. (2) Methods: The study was conducted on 120 healthcare workers from Dr. Antoni Jurasz University Hospital No. 1 in Bydgoszcz, between June and December 2020. In all participants, IgA and IgG antibody serum concentrations were measured using the semi-quantitative Anti-SARS-CoV-2 ELISA test (Euroimmun). After vaccination, in January and February 2021, antibody levels were examined using the quantitative IgG Anti-SARS-CoV-2 Quantivac ELISA test (Euroimmun). (3) Results: During the whole study period, the SARS-CoV-2 infection was confirmed in 29 (24.2%) participants. In all infected participants, IgA and IgG antibodies were detectable after infection by semi-quantitative serological tests. Levels of antibodies were higher one month after the first dose in the convalescents than in the non-previously infected participants. In this second group, the level of antibodies increased significantly after the second dose of vaccines compared to the first dose. (4) Conclusions: The level of antibodies after the first dose of vaccine in the convalescents' group is higher than in the SARS-CoV-2 non-infected group, but the differences disappear after the second vaccination.

18.
Front Microbiol ; 12: 710085, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489900

RESUMEN

Listeria monocytogenes are Gram-positive, facultatively anaerobic, non-spore-forming bacteria that easily adapt to changing environmental conditions. The ability to grow at a wide range of temperatures, pH, and salinity determines the presence of the pathogen in water, sewage, soil, decaying vegetation, and animal feed. L. monocytogenes is an etiological factor of listeriosis, especially dangerous for the elderly, pregnant women, and newborns. The major source of L. monocytogenes for humans is food, including fresh and smoked products. Its high prevalence in food is associated with bacterial adaptation to the food processing environment (FPE). Since the number of listeriosis cases has been progressively increasing an efficient eradication of the pathogen from the FPE is crucial. Understanding the mechanisms of bacterial adaptation to environmental stress will significantly contribute to developing novel, effective methods of controlling L. monocytogenes in the food industry.

19.
Sci Total Environ ; 795: 148949, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34252782

RESUMEN

Coronavirus disease 2019 (COVID-19) is the most influential infectious disease to emerge in the early 21st century. The outbreak of COVID-19 has caused a great many deaths and has had a negative impact on the world's economic development. The etiological agent of COVID-19 is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2, which is highly infectious and variable, can be transmitted through different environmental media (gaseous, liquid, and solid). There are many unanswered questions surrounding this virus. This review summarizes the current knowledge on the latest global COVID-19 epidemic situation, SARS-CoV-2 variants, the progress in SARS-CoV-2 vaccine use, and the existence and spread of SARS-CoV-2 in gaseous, liquid, and solid media, with particular emphasis on the prevention and control of further spread of the disease. This review aims to help people worldwide to become more familiar with the transmission characteristics of SARS-CoV-2 in environmental media, so as targeted measures to fight the epidemic, reduce deaths, and restore the economy can be implemented under the pressure of global SARS-CoV-2 vaccine shortages.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacunas contra la COVID-19 , Monitoreo del Ambiente , Humanos
20.
J Clin Med ; 10(9)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063654

RESUMEN

The outbreak of Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2). Thus far, the virus has killed over 2,782,112 people and infected over 126,842,694 in the world (state 27 March 2021), resulting in a pandemic for humans. Based on the present data, SARS-CoV-2 transmission from animals to humans cannot be excluded. If mutations allowing breaking of the species barrier and enhancing transmissibility occurred, next changes in the SARS-CoV-2 genome, leading to easier spreading and greater pathogenicity, could happen. The environment and saliva might play an important role in virus transmission. Therefore, there is a need for strict regimes in terms of personal hygiene, including hand washing and surface disinfection. The presence of viral RNA is not an equivalent of active viral infection. The positive result of the RT-PCR method may represent either viral residues or infectious virus particles. RNA-based tests should not be used in patients after the decline of disease symptoms to confirm convalescence. It has been proposed to use the test based on viral, sub-genomic mRNA, or serological methods to find the immune response to infection. Vertical transmission of SARS-CoV-2 is still a little-known issue. In our review, we have prepared a meta-analysis of the transmission of SARS-CoV-2 from mother to child depending on the type of delivery. Our study indicated that the transmission of the virus from mother to child is rare, and the infection rate is not higher in the case of natural childbirth, breastfeeding, or contact with the mother. We hope that this review and meta-analysis will help to systemize knowledge about SARS-CoV-2 with an emphasis on diagnostic implications and transmission routes, in particular, mother-to-child transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA