Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cancer ; 22(1): 150, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679783

RESUMEN

Recent advances in immuno-oncology have opened up new and impressive treatment options for cancer. Notwithstanding, overcoming the limitations of the current FDA-approved therapies with monoclonal antibodies (mAbs) that block the PD-1/PD-L1 pathway continues to lead to the testing of multiple approaches and optimizations. Recently, a series of macrocyclic peptides have been developed that exhibit binding strengths to PD-L1 ranging from sub-micromolar to micromolar. In this study, we present the most potent non-antibody-based PD-1/PD-L1 interaction inhibitor reported to date. The structural and biological characterization of this macrocyclic PD-L1 targeting peptide provides the rationale for inhibition of both PD-1/PD-L1 and CD80/PD-L1 complexes. The IC50 and EC50 values obtained in PD-L1 binding assays indicate that the pAC65 peptide has potency equivalent to the current FDA-approved mAbs and may have similar activity to the BMS986189 peptide, which entered the clinical trial and has favorable safety and pharmacokinetic data. The data presented here delineate the generation of similar peptides with improved biological activities and applications not only in the field of cancer immunotherapy but also in other disorders related to the immune system.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Humanos , Anticuerpos Monoclonales/farmacología , Inhibidores de Puntos de Control Inmunológico , Péptidos/farmacología
2.
Nat Commun ; 14(1): 1698, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973244

RESUMEN

Hypusination is a unique post-translational modification of the eukaryotic translation factor 5A (eIF5A) that is essential for overcoming ribosome stalling at polyproline sequence stretches. The initial step of hypusination, the formation of deoxyhypusine, is catalyzed by deoxyhypusine synthase (DHS), however, the molecular details of the DHS-mediated reaction remained elusive. Recently, patient-derived variants of DHS and eIF5A have been linked to rare neurodevelopmental disorders. Here, we present the cryo-EM structure of the human eIF5A-DHS complex at 2.8 Å resolution and a crystal structure of DHS trapped in the key reaction transition state. Furthermore, we show that disease-associated DHS variants influence the complex formation and hypusination efficiency. Hence, our work dissects the molecular details of the deoxyhypusine synthesis reaction and reveals how clinically-relevant mutations affect this crucial cellular process.


Asunto(s)
Enfermedades Neurodegenerativas , Trastornos del Neurodesarrollo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Factores de Iniciación de Péptidos , Humanos , Microscopía por Crioelectrón , Factores de Iniciación de Péptidos/química , Procesamiento Proteico-Postraduccional , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Factor 5A Eucariótico de Iniciación de Traducción
3.
EMBO J ; 41(20): e111318, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36102610

RESUMEN

Post-translational modifications by ubiquitin-like proteins (UBLs) are essential for nearly all cellular processes. Ubiquitin-related modifier 1 (Urm1) is a unique UBL, which plays a key role in tRNA anticodon thiolation as a sulfur carrier protein (SCP) and is linked to the noncanonical E1 enzyme Uba4 (ubiquitin-like protein activator 4). While Urm1 has also been observed to conjugate to target proteins like other UBLs, the molecular mechanism of its attachment remains unknown. Here, we reconstitute the covalent attachment of thiocarboxylated Urm1 to various cellular target proteins in vitro, revealing that, unlike other known UBLs, this process is E2/E3-independent and requires oxidative stress. Furthermore, we present the crystal structures of the peroxiredoxin Ahp1 before and after the covalent attachment of Urm1. Surprisingly, we show that urmylation is accompanied by the transfer of sulfur to cysteine residues in the target proteins, also known as cysteine persulfidation. Our results illustrate the role of the Uba4-Urm1 system as a key evolutionary link between prokaryotic SCPs and the UBL modifications observed in modern eukaryotes.


Asunto(s)
Ubiquitina , Ubiquitinas , Anticodón , Proteínas Portadoras/metabolismo , Cisteína , Peroxirredoxinas , Azufre/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
4.
J Enzyme Inhib Med Chem ; 36(1): 1267-1281, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34210221

RESUMEN

Mirolysin is a secretory protease of Tannerella forsythia, a member of the dysbiotic oral microbiota responsible for periodontitis. In this study, we show that mirolysin latency is achieved by a "cysteine-switch" mechanism exerted by Cys23 in the N-terminal profragment. Mutation of Cys23 shortened the time needed for activation of the zymogen from several days to 5 min. The mutation also decreased the thermal stability and autoproteolysis resistance of promirolysin. Mature mirolysin is a thermophilic enzyme and shows optimal activity at 65 °C. Through NMR-based fragment screening, we identified a small molecule (compound (cpd) 9) that blocks promirolysin maturation and functions as a competitive inhibitor (Ki = 3.2 µM), binding to the S1' subsite of the substrate-binding pocket. Cpd 9 shows superior specificity and does not interact with other T. forsythia proteases or Lys/Arg-specific proteases.


Asunto(s)
Péptido Hidrolasas/metabolismo , Periodontitis/microbiología , Inhibidores de Proteasas/farmacología , Tannerella forsythia/enzimología , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Descubrimiento de Drogas , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Humanos , Espectroscopía de Resonancia Magnética/métodos , Simulación del Acoplamiento Molecular , Estructura Molecular , Péptido Hidrolasas/efectos de los fármacos , Inhibidores de Proteasas/química , Tannerella forsythia/aislamiento & purificación , Temperatura
5.
Nanoscale ; 13(27): 11932-11942, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34195748

RESUMEN

Cage forming proteins have numerous potential applications in biomedicine and biotechnology, where the iron storage ferritin is a widely used example. However, controlling ferritin cage assembly/disassembly remains challenging, typically requiring extreme conditions incompatible with many desirable cargoes, particularly for more fragile biopharmaceuticals. Recently, a ferritin from the hyperthermophile bacterium Thermotoga maritima (TmFtn) has been shown to have reversible assembly under mild conditions, offering greater potential biocompatibility in terms of cargo access and encapsulation. Like Archeoglobus fulgidus ferritin (AfFtn), TmFtn forms 24mer cages mediated by metal ions (Mg2+). We have solved the crystal structure of the wild type TmFtn and several mutants displaying different assembly/disassembly properties. These data combined with other biophysical studies allow us to suggest candidate interfacial amino acids crucial in controlling assembly. This work deepens our understanding of how these ferritin complexes assemble and is a useful step towards production of triggerable ferritins in which these properties can be finely designed and controlled.


Asunto(s)
Ferritinas , Hierro , Ferritinas/genética , Hierro/metabolismo , Thermotoga maritima
6.
iScience ; 24(1): 101960, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33437940

RESUMEN

In the development of PD-L1-blocking therapeutics, it is essential to transfer initial in vitro findings into proper in vivo animal models. Classical immunocompetent mice are attractive due to high accessibility and low experimental costs. However, it is unknown whether inter-species differences in PD-L1 sequence and structure would allow for human-mouse cross applications. Here, we disclose the first structure of the mouse (m) PD-L1 and analyze its similarity to the human (h) PD-L1. We show that mPD-L1 interacts with hPD-1 and provides a negative signal toward activated Jurkat T cells. We also show major differences in druggability between the hPD-L1 and mPD-L1 using therapeutic antibodies, a macrocyclic peptide, and small molecules. Our study indicates that while the amino acid sequence is well conserved between the hPD-L1 and mPD-L1 and overall structures are almost identical, crucial differences determine the interaction with anti-PD-L1 agents, that cannot be easily predicted in silico.

7.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339113

RESUMEN

Glycerol is an organic compound that can be utilized as an alternative source of carbon by various organisms. One of the ways to assimilate glycerol by the cell is the phosphorylative catabolic pathway in which its activation is catalyzed by glycerol kinase (GK) and glycerol-3-phosphate (G3P) is formed. To date, several GK crystal structures from bacteria, archaea, and unicellular eukaryotic parasites have been solved. Herein, we present a series of crystal structures of GK from Chaetomium thermophilum (CtGK) in apo and glycerol-bound forms. In addition, we show the feasibility of an ADP-dependent glucokinase (ADPGK)-coupled enzymatic assay to measure the CtGK activity. New structures described in our work provide structural insights into the GK catalyzed reaction in the filamentous fungus and set the foundation for understanding the glycerol metabolism in eukaryotes.


Asunto(s)
Chaetomium/enzimología , Proteínas Fúngicas/química , Glicerol Quinasa/química , Dominio Catalítico , Estabilidad de Enzimas , Proteínas Fúngicas/metabolismo , Glicerol Quinasa/metabolismo , Simulación de Dinámica Molecular
8.
Molecules ; 25(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053673

RESUMEN

Streptococcus pneumoniae is a frequent bacterial pathogen of the human respiratory tract causing pneumonia, meningitis and sepsis, a serious healthcare burden in all age groups. S. pneumoniae lacks complete respiratory chain and relies on carbohydrate fermentation for energy generation. One of the essential components for this includes the mannose phosphotransferase system (Man-PTS), which plays a central role in glucose transport and exhibits a broad specificity for a range of hexoses. Importantly, Man-PTS is involved in the global regulation of gene expression for virulence determinants. We herein report the three-dimensional structure of the EIIA domain of S. pneumoniae mannose phosphotransferase system (SpEIIA-Man). Our structure shows a dimeric arrangement of EIIA and reveals a detailed molecular description of the active site. Since PTS transporters are exclusively present in microbes and sugar transporters have already been suggested as valid targets for antistreptococcal antibiotics, our work sets foundation for the future development of antimicrobial strategies against Streptococcus pneumoniae.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Manosa/metabolismo , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Streptococcus pneumoniae/enzimología , Cristalografía por Rayos X , Especificidad por Sustrato
9.
EMBO J ; 39(19): e105087, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901956

RESUMEN

The chemical modification of tRNA bases by sulfur is crucial to tune translation and to optimize protein synthesis. In eukaryotes, the ubiquitin-related modifier 1 (Urm1) pathway is responsible for the synthesis of 2-thiolated wobble uridine (U34 ). During the key step of the modification cascade, the E1-like activating enzyme ubiquitin-like protein activator 4 (Uba4) first adenylates and thiocarboxylates the C-terminus of its substrate Urm1. Subsequently, activated thiocarboxylated Urm1 (Urm1-COSH) can serve as a sulfur donor for specific tRNA thiolases or participate in ubiquitin-like conjugation reactions. Structural and mechanistic details of Uba4 and Urm1 have remained elusive but are key to understand the evolutionary branch point between ubiquitin-like proteins (UBL) and sulfur-relay systems. Here, we report the crystal structures of full-length Uba4 and its heterodimeric complex with its substrate Urm1. We show how the two domains of Uba4 orchestrate recognition, binding, and thiocarboxylation of the C-terminus of Urm1. Finally, we uncover how the catalytic domains of Uba4 communicate efficiently during the reaction cycle and identify a mechanism that enables Uba4 to protect itself against self-conjugation with its own product, namely activated Urm1-COSH.


Asunto(s)
Nucleotidiltransferasas/química , ARN de Transferencia/química , Azufre/química , Sulfurtransferasas/química , Ubiquitinas/química , Humanos , Nucleotidiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Azufre/metabolismo , Sulfurtransferasas/metabolismo , Ubiquitinas/metabolismo
10.
Microbiol Res ; 240: 126529, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32622987

RESUMEN

Toxin-antitoxin (TA) systems are ubiquitous in bacteria and on numerous occasions have been postulated to play a role in virulence of pathogens. Some Staphylococcus aureus strains carry a plasmid, which encodes the highly toxic PemIKSa TA system involved in maintenance of the plasmid but also implicated in modulation of gene expression. Here we showed that pemIKSa1-Sp TA system, homologous to the plasmid-encoded PemIKSa, is present in virtually each chromosome of S. pseudintermedius strain, however exhibits sequence heterogeneity. This results in two length variants of the PemKSa1-Sp toxin. The shorter (96 aa), C-terminally truncated toxin is enzymatically inactive, whereas the full length (112 aa) variant is an RNase, though nontoxic to the host cells. The lack of toxicity of the active PemKSa-Sp2 toxin is explained by increased substrate specificity. The pemISa1-Sp antitoxin gene seems pseudogenized, however, the whole pemIKSa1-Sp system is transcriptionally active. When production of N-terminally truncated antitoxins using alternative start codons is assumed, there are five possible length variants. Here we showed that even substantially truncated antitoxins are able to interact with PemKSa-Sp2 toxin and inhibit its RNase activity. Moreover, the antitoxins can rescue bacterial cells from toxic effects of overexpression of plasmid-encoded PemKSa toxin. Collectively, our data indicates that, contrary to the toxic plasmid-encoded PemIKSa TA system, location of pemIKSa1-Sp in the chromosome of S. pseudintermedius results in the loss of its toxicity. Interestingly, the retained RNase activity of PemKSa1-Sp2 toxin and functionality of the putative, N-terminally truncated antitoxins suggest the existence of evolutionary pressure for alleviation/mitigation of the toxin's toxicity and retention of the inhibitory activity of the antitoxin, respectively.


Asunto(s)
Staphylococcus/genética , Staphylococcus/metabolismo , Sistemas Toxina-Antitoxina/genética , Sistemas Toxina-Antitoxina/fisiología , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Heterogeneidad Genética , Secuencias Repetitivas Esparcidas , Sistemas de Lectura Abierta , Plásmidos , Proteínas Recombinantes , Virulencia
11.
Biomolecules ; 10(4)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235505

RESUMEN

Deoxyhypusine synthase (DHS) is a transferase enabling the formation of deoxyhypusine, which is the first, rate-limiting step of a unique post-translational modification: hypusination. DHS catalyses the transfer of a 4-aminobutyl moiety of polyamine spermidine to a specific lysine of eukaryotic translation factor 5A (eIF5A) precursor in a nicotinamide adenine dinucleotide (NAD)-dependent manner. This modification occurs exclusively on one protein, eIF5A, and it is essential for cell proliferation. Malfunctions of the hypusination pathway, including those caused by mutations within the DHS encoding gene, are associated with conditions such as cancer or neurodegeneration. Here, we present a series of high-resolution crystal structures of human DHS. Structures were determined as the apoprotein, as well as ligand-bound states at high-resolutions ranging from 1.41 to 1.69 Å. By solving DHS in complex with its natural substrate spermidine (SPD), we identified the mode of substrate recognition. We also observed that other polyamines, namely spermine (SPM) and putrescine, bind DHS in a similar manner as SPD. Moreover, we performed activity assays showing that SPM could to some extent serve as an alternative DHS substrate. In contrast to previous studies, we demonstrate that no conformational changes occur in the DHS structure upon spermidine-binding. By combining mutagenesis and a light-scattering approach, we show that a conserved "ball-and-chain" motif is indispensable to assembling a functional DHS tetramer. Our study substantially advances our knowledge of the substrate recognition mechanism by DHS and may aid the design of pharmacological compounds for potential applications in cancer therapy.


Asunto(s)
Lisina/análogos & derivados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Unión Proteica , Conformación Proteica
12.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569356

RESUMEN

Glucose phosphorylating enzymes are crucial in the regulation of basic cellular processes, including metabolism and gene expression. Glucokinases and hexokinases provide a pool of phosphorylated glucose in an adenosine diphosphate (ADP)- and ATP-dependent manner to shape the cell metabolism. The glucose processing enzymes from Kluyveromyces lactis are poorly characterized despite the emerging contribution of this yeast strain to industrial and laboratory scale biotechnology. The first reports on K. lactis glucokinase (KlGlk1) positioned the enzyme as an essential component required for glucose signaling. Nevertheless, no biochemical and structural information was available until now. Here, we present the first crystal structure of KlGlk1 together with biochemical characterization, including substrate specificity and enzyme kinetics. Additionally, comparative analysis of the presented structure and the prior structures of lactis hexokinase (KlHxk1) demonstrates the potential transitions between open and closed enzyme conformations upon ligand binding.


Asunto(s)
Glucoquinasa/química , Kluyveromyces/enzimología , Modelos Moleculares , Conformación Proteica , Glucoquinasa/genética , Glucoquinasa/metabolismo , Glucosa/metabolismo , Cinética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Especificidad por Sustrato
13.
Arch Biochem Biophys ; 671: 130-142, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31276659

RESUMEN

Heme oxygenase-1 (HO-1, HMOX1) degrades pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin. The enzyme exerts multiple cytoprotective functions associated with the promotion of angiogenesis and counteraction of the detrimental effects of cellular stress which are crucial for the survival of both normal and tumor cells. Accordingly, in many tumor types, high expression of HO-1 correlates with poor prognosis and resistance to treatment, i.e. chemotherapy, suggesting inhibition of HO-1 as a possible antitumor approach. At the same time, the lack of selective and well-profiled inhibitors of HO-1 determines the unmet need for new modulators of this enzyme, with the potential to be used in either adjuvant therapy or as the stand-alone targeted therapeutics. In the current study, we provided novel inhibitors of HO-1 and validated the effect of pharmacological inhibition of HO activity by the imidazole-based inhibitor (SLV-11199) in human pancreatic (PANC-1) and prostate (DU-145) cancer cell lines. We demonstrated potent inhibition of HO activity in vitro and showed associated anticancer effectiveness of SLV-11199. Treatment with the tested compound led to decreased cancer cell viability and clonogenic potential. It has also sensitized the cancer cells to chemotherapy. In PANC-1 cells, diminished HO activity resulted in down-regulation of pro-angiogenic factors like IL-8. Mechanistic investigations revealed that the treatment with SLV-11199 decreased cell migration and inhibited MMP-1 and MMP-9 expression. Moreover, it affected mesenchymal phenotype by regulating key modulators of the epithelial to mesenchymal transition (EMT) signalling axis. Finally, F-actin cytoskeleton and focal contacts were destabilized by the reported compound. Overall, the current study suggests a possible relevance of the tested novel inhibitor of HO activity as a potential anticancer compound. To support such utility, further investigation is still needed, especially in in vivo conditions.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hemo-Oxigenasa 1/antagonistas & inhibidores , Imidazoles/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos
14.
J Enzyme Inhib Med Chem ; 34(1): 638-643, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30727784

RESUMEN

Inhibitors of serine proteases are not only extremely useful in the basic research but are also applied extensively in clinical settings. Using Systematic Evolution of Ligands by Exponential Enrichment (SELEX) approach we developed a family of novel, single-stranded DNA aptamers capable of specific trypsin inhibition. Our most potent candidate (T24) and its short version (T59) were thoroughly characterised in terms of efficacy. T24 and T59 efficiently inhibited bovine trypsin with Ki of 176 nM and 475 nM, respectively. Interestingly, in contrast to the majority of known trypsin inhibitors, the selected aptamers have superior specificity and did not interact with porcine trypsin or any human proteases tested. These included plasmin and thrombin characterised by trypsin-like substrate specificity. Our results demonstrate that SELEX may be successfully employed in the development of potent and specific DNA based protease inhibitors.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , ADN de Cadena Simple/efectos de los fármacos , Inhibidores de Tripsina/farmacología , Tripsina/metabolismo , Animales , Aptámeros de Nucleótidos/síntesis química , Aptámeros de Nucleótidos/química , Bovinos , ADN de Cadena Simple/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Relación Estructura-Actividad , Porcinos , Inhibidores de Tripsina/síntesis química , Inhibidores de Tripsina/química
15.
Acta Crystallogr D Struct Biol ; 74(Pt 7): 695-701, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29968679

RESUMEN

Recent research has identified a potential role of the hyaluronic acid receptor stabilin-2 (Stab2) in cancer metastasis. Stab2 belongs to a group of scavenger receptors and is responsible for the clearance of more than ten ligands, including hyaluronic acid (HA). In vivo experiments on mice have shown that the absence of Stab2, or its blocking by an antibody, effectively opposes cancer metastasis, which is accompanied by an increase in the level of circulating HA. Knowledge of ligand recognition and signal transduction by Stab2 is limited and no three-dimensional structures of any protein fragments of this receptor have been solved to date. Here, a high-resolution X-ray structure of the seventh FAS1 domain of Stab2 is reported. This structure provides the first insight into the Stab2 structure.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/química , Receptor fas/química , Animales , Cristalografía por Rayos X , Ácido Hialurónico , Ratones , Conformación Proteica , Dominios Proteicos , Transducción de Señal
16.
J Biol Chem ; 293(28): 11088-11099, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29784881

RESUMEN

In higher eukaryotes, several ATP-utilizing enzymes known as hexokinases activate glucose in the glycolysis pathway by phosphorylation to glucose 6-phosphate. In contrast to canonical hexokinases, which use ATP, ADP-dependent glucokinase (ADPGK) catalyzes noncanonical phosphorylation of glucose to glucose 6-phosphate using ADP as a phosphate donor. Initially discovered in Archaea, the human homolog of ADPGK was described only recently. ADPGK's involvement in modified bioenergetics of activated T cells has been postulated, and elevated ADPGK expression has been reported in various cancer tissues. However, the physiological role of ADPGK is still poorly understood, and effective ADPGK inhibitors still await discovery. Here, we show that 8-bromo-substituted adenosine nucleotide inhibits human ADPGK. By solving the crystal structure of archaeal ADPGK in complex with 8-bromoadenosine phosphate (8-Br-AMP) at 1.81 Å resolution, we identified the mechanism of inhibition. We observed that 8-Br-AMP is a competitive inhibitor of ADPGK and that the bromine substitution induces marked structural changes within the protein's active site by engaging crucial catalytic residues. The results obtained using the Jurkat model of activated human T cells suggest its moderate activity in a cellular setting. We propose that our structural insights provide a critical basis for rational development of novel ADPGK inhibitors.


Asunto(s)
Adenosina/análogos & derivados , Glucoquinasa/química , Adenosina/química , Adenosina/farmacología , Dominio Catalítico , Cristalografía por Rayos X , Glucoquinasa/antagonistas & inhibidores , Glucosa/metabolismo , Humanos , Células Jurkat , Conformación Proteica
17.
Protein Sci ; 27(3): 790-797, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29352744

RESUMEN

ADP-dependent glucokinase (ADPGK) is an alternative novel glucose phosphorylating enzyme in a modified glycolysis pathway of hyperthermophilic Archaea. In contrast to classical ATP-dependent hexokinases, ADPGK utilizes ADP as a phosphoryl group donor. Here, we present a crystal structure of archaeal ADPGK from Methanocaldococcus jannaschii in complex with an inhibitor, 5-iodotubercidin, d-glucose, inorganic phosphate, and a magnesium ion. Detailed analysis of the architecture of the active site allowed for confirmation of the previously proposed phosphorylation mechanism and the crucial role of the invariant arginine residue (Arg197). The crystal structure shows how the phosphate ion, while mimicking a ß-phosphate group, is positioned in the proximity of the glucose moiety by arginine and the magnesium ion, thus providing novel insights into the mechanism of catalysis. In addition, we demonstrate that 5-iodotubercidin inhibits human ADPGK-dependent T cell activation-induced reactive oxygen species (ROS) release and downstream gene expression, and as such it may serve as a model compound for further screening for hADPGK-specific inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glucoquinasa/química , Glucoquinasa/metabolismo , Methanocaldococcus/enzimología , Tubercidina/análogos & derivados , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Células Jurkat , Modelos Moleculares , Fosfatos/metabolismo , Estructura Secundaria de Proteína , Especies Reactivas de Oxígeno/metabolismo , Tubercidina/farmacología
18.
Oncotarget ; 8(42): 72167-72181, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069777

RESUMEN

Antibodies targeting the PD-1/PD-L1 immune checkpoint achieved spectacular success in anticancer therapy in the recent years. In contrast, no small molecules with cellular activity have been reported so far. Here we provide evidence that small molecules are capable of alleviating the PD-1/PD-L1 immune checkpoint-mediated exhaustion of Jurkat T-lymphocytes. The two optimized small-molecule inhibitors of the PD-1/PD-L1 interaction, BMS-1001 and BMS-1166, developed by Bristol-Myers Squibb, bind to human PD-L1 and block its interaction with PD-1, when tested on isolated proteins. The compounds present low toxicity towards tested cell lines and block the interaction of soluble PD-L1 with the cell surface-expressed PD-1. As a result, BMS-1001 and BMS-1166 alleviate the inhibitory effect of the soluble PD-L1 on the T-cell receptor-mediated activation of T-lymphocytes. Moreover, the compounds were effective in attenuating the inhibitory effect of the cell surface-associated PD-L1. We also determined the X-ray structures of the complexes of BMS-1001 and BMS-1166 with PD-L1, which revealed features that may be responsible for increased potency of the compounds compared to their predecessors. Further development may lead to the design of an anticancer therapy based on the orally delivered immune checkpoint inhibition.

19.
Sci Rep ; 7(1): 13399, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29042609

RESUMEN

PIM1 is an oncogenic kinase overexpressed in a number of cancers where it correlates with poor prognosis. Several studies demonstrated that inhibition of PIM1 activity is an attractive strategy in fighting overexpressing cancers, while distinct structural features of ATP binding pocket make PIM1 an inviting target for the design of selective inhibitors. To facilitate development of specific PIM1 inhibitors, in this study we report three crystal structures of ATP-competitive inhibitors at the ATP binding pocket of PIM1. Two of the reported structures (CX-4945 and Ro-3306) explain the off-target effect on PIM1 of respectively casein kinase 2 and cyclin-dependent kinase 1 dedicated inhibitors. In turn, the structure with CX-6258 demonstrates a binding mode of a potent, selective inhibitor of PIM1, PIM2, PIM3 and Flt-3 kinases. The consequences of our findings for future inhibitor development are discussed.


Asunto(s)
Adenosina Trifosfato/química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-pim-1/química , Relación Estructura-Actividad Cuantitativa , Adenosina Trifosfato/metabolismo , Sitios de Unión , Unión Competitiva , Dominio Catalítico , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Naftiridinas/química , Naftiridinas/farmacología , Fenazinas , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores
20.
Angew Chem Int Ed Engl ; 56(44): 13732-13735, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28881104

RESUMEN

Blockade of the immunoinhibitory PD-1/PD-L1 pathway using monoclonal antibodies has shown impressive results with durable clinical antitumor responses. Anti-PD-1 and anti-PD-L1 antibodies have now been approved for the treatment of a number of tumor types, whereas the development of small molecules targeting immune checkpoints lags far behind. We characterized two classes of macrocyclic-peptide inhibitors directed at the PD-1/PD-L1 pathway. We show that these macrocyclic compounds act by directly binding to PD-L1 and that they are capable of antagonizing PD-L1 signaling and, similarly to antibodies, can restore the function of T-cells. We also provide the crystal structures of two of these small-molecule inhibitors bound to PD-L1. The structures provide a rationale for the checkpoint inhibition by these small molecules, and a description of their small molecule/PD-L1 interfaces provides a blueprint for the design of small-molecule inhibitors of the PD-1/PD-L1 pathway.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Antígeno B7-H1/inmunología , Descubrimiento de Drogas , Humanos , Células Jurkat , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Simulación del Acoplamiento Molecular , Receptor de Muerte Celular Programada 1/inmunología , Mapas de Interacción de Proteínas/efectos de los fármacos , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA