Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Mech Ageing Dev ; 222: 111987, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284459

RESUMEN

The predictive value of the susceptibility to oxidation of LDL particles (LDLox) in cardiometabolic risk assessment is incompletely understood. The main objective of the current study was to assess its relationship with other relevant biomarkers and cardiometabolic risk factors from MARK-AGE data. A cross-sectional observational study was carried out on 1089 subjects (528 men and 561 women), aged 40-75 years old, randomly recruited age- and sex-stratified individuals from the general population. A correlation analysis exploring the relationships between LDLox and relevant biomarkers was undertaken, as well as the development and validation of several machine learning algorithms, for estimating the risk of the combined status of high blood pressure and obesity for the MARK-AGE subjects. The machine learning models yielded Area Under the Receiver Operating Characteristic Curve Score ranging 0.783-0.839 for the internal validation, while the external validation resulted in an Under the Receiver Operating Characteristic Curve Score between 0.648 and 0.787, with the variables based on LDLox reaching significant importance within the obtained predictions. The current study offers novel insights regarding the combined effects of LDL oxidation and other ageing markers on cardiometabolic risk. Future studies might be extended on larger patient cohorts, in order to obtain reproducible clinical assessment models.

2.
Nutrients ; 16(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275358

RESUMEN

Despite beneficial cardiovascular effects, substantial long-term modulation of food pattern could only be achieved in a limited number of participants. The impact of attitude towards healthy nutrition (ATHN) on successful modulation of dietary behavior is unclear, especially in the elderly. We aimed to analyze whether the personal ATHN influences 12-month adherence to two different dietary intervention regimes within a 36-month randomized controlled trial. METHODS: 502 subjects were randomized to an intervention group (IG; dietary pattern focused on high intake of unsaturated fatty acids (UFA), plant protein and fiber) or control group (CG; dietary recommendation in accordance with the German Society of Nutrition) within a 36-month dietary intervention trial. Sum scores for effectiveness, appreciation and practice of healthy nutrition were assessed using ATHN questionnaire during the trial (n = 344). Linear regression models were used to investigate associations between ATHN and dietary patterns at baseline and at month 12. RESULTS: Retirement, higher education level, age and lower body mass index (BMI) were associated with higher ATHN sum scores. ATHN was similar in CG and IG. Higher baseline intake of polyunsaturated fatty acids (PUFA) and fiber as well as lower intake in saturated fatty acids (SFA) were associated with higher scores in practice in both groups. The intervention resulted in a stronger increase of UFA, protein and fiber in the IG after 12 months, while intake of SFA declined (p < 0.01). Higher scores in appreciation were significantly associated with higher intake of fiber and lower intake of SFA in the CG at month 12, whereas no associations between ATHN and macronutrient intake were observed in the IG after 12 months. CONCLUSIONS: While ATHN appeared to play a role in general dietary behavior, ATHN did not affect the success of the specific dietary intervention in the IG at month 12. Thus, the dietary intervention achieved a substantial modification of dietary pattern in the IG and was effective to override the impact of the individual ATHN on dietary behavior.


Asunto(s)
Dieta Saludable , Dieta Rica en Proteínas , Ácidos Grasos Insaturados , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Dieta Saludable/psicología , Dieta Saludable/métodos , Ácidos Grasos Insaturados/administración & dosificación , Cooperación del Paciente , Fibras de la Dieta/administración & dosificación , Conducta Alimentaria/psicología , Grasas Insaturadas en la Dieta/administración & dosificación , Encuestas y Cuestionarios , Proteínas en la Dieta/administración & dosificación , Índice de Masa Corporal
3.
Crit Rev Toxicol ; 54(8): 485-617, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39150724

RESUMEN

The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.


Considering the implication of endogenous glycation compounds in aging and disease, dietary exposure via consumption of an "AGE (advanced glycation end product) rich diet" is increasingly suggested to pose a potential health risk. However, studies attempting to assess an association between dietary glycation compounds and adverse health effects frequently suffer from insufficient chemical analysis of glycation compounds, including inadequate structural characterization and limited quantitative data. The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) previously defined quality criteria for studies designed to assess the effects of dietary glycation compounds on human health. The aim of the present work is to summarize data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and to systematically evaluate if the currently available scientific database allows for a conclusive assessment of potential health effects of defined glycation compounds (Part B).The term "glycation compounds" comprises a wide range of structurally diverse compounds that derive from the Maillard reaction, a chemical reaction between reducing carbohydrates and amino compounds that occurs during food processing. In the first stage of the Maillard reaction, reducing sugars such as glucose and fructose react for instance with the ε-amino group of lysine, which is most abundant in food ("glycation" of lysine). Subsequently, these primary reaction products undergo Amadori rearrangement to yield products (ARP) such as fructosyllysine (FL) from glucose and also Heyns rearrangement products (HRPs) such as glucosyl- and mannosyllysine from fructose. While ARPs are rapidly formed during food processing, they are not stable and undergo degradation reactions, predominantly to 1,2-dicarbonyl compounds such as glyoxal (GO), methylglyoxal (MGO) and 3-deoxyglucosone (3-DG), which are highly reactive. The last stage of the Maillard reaction is characterized predominantly by the reaction of these dicarbonyl compounds with nucleophilic groups of proteins. The side-chains of lysine and arginine residues as well as the N-termini of proteins are important reaction sites. Carboxyalkylated amino acids such as N-ε-carboxymethyllysine (CML) and N-ε-carboxyethyllysine (CEL) result from reaction of the ε-amino group of lysine with the dicarbonyl compounds GO and MGO. Dicarbonyl compounds with C5 or C6 chains can form cyclic pyrrole derivatives at the ε-amino group of lysine. The most important example for this reaction is pyrraline, which is formed from reaction of 3-DG and lysine. The reaction of dicarbonyl compounds with the guanidino group of arginine mainly leads to hydroimidazolones, of which the MGO-derived hydroimidazolone 1 (MG-H1) is best described in food systems.ARPs are the most abundant glycation products found in food. Up to 55% of the lysine residues in food may be modified to ARPs at the side-chain. Food items particularly rich in ARPs include bread, rusk, biscuits, chocolate, and powdered infant formulas. Exposure estimates range between 0.6­1.6 mg/kg body weight (bw), although exposure may be as high as 14.3 mg/kg bw in individuals consuming foods with extreme ARP concentrations. Foods particularly rich in dicarbonyl compounds include heat-treated or long-term stored items rich in reducing sugars such as jams, alternative sweeteners, soft drinks, honey, candies, cookies, and vinegars, especially balsamico-type vinegars. The main contributors to the daily intake of MGO, GO, and 3-DG are coffee and bread. Dietary exposure to dicarbonyl compounds has been estimated to range between 0.02­0.29 mg/kg bw/d for MGO, 0.04­0.16 mg/kg bw/d for GO, 0.14­2.3 mg/kg bw/d for 3-DG, and 0.08­0.13 mg/kg bw/d for 3-deoxygalactosone (3-DGal). Dietary intake of 5-hydroxymethylfurfural (HMF), which can be formed from 3-DG, is estimated to range between 0.0001­0.9 mg/kg bw/d. Exposure estimates for individual glycated amino acids range from 0.03­0.35 mg/kg bw/d for CML, 0.02­0.04 mg/kg bw/d for CEL and 0.19­0.41 mg/kg bw/d for MG-H1. From a model diet consisting of 1 L milk, 500 g bakery products and 400 mL coffee, an intake of pyrraline corresponding to 0.36 mg/kg bw/d for a 70 kg person was estimated.Quantitative analysis of individual glycation compounds or their metabolites in tissues or body fluids as well as their reaction products with amino acids, proteins or DNA may serve to monitor exposure to glycation compounds. However, since glycation compounds are also formed endogenously, these biomarkers reflect the totality of the exposure, making it inherently difficult to define the body burden due to dietary intake against the background of endogenous formation.Information on the toxicokinetics and toxicity of glycation compounds is scarce and mostly limited to the reactive dicarbonyl compounds GO, MGO, 3-DG, HMF, and individual glycated amino acids such as CML and CEL. Acute toxicity of dicarbonyl compounds is low to moderate. There are some data to suggest that rapid detoxification of dicarbonyls in the gastrointestinal tract and liver may limit their oral bioavailability. Biotransformation of GO and MGO occurs predominantly via the glutathione (GSH)-dependent glyoxalase system, and to a lesser extent via glutathione-independent aldo-keto-reductases, which are also responsible for biotransformation of 3-DG. GO, MGO and 3-DG readily react with DNA bases in vitro, giving rise to DNA adducts. There is clear evidence for genotoxicity of GO, MGO and 3-DG. Repeated dose toxicity studies on GO consistently reported reduced body weight gain concomitant with reduced food and water consumption but did not identify compound related changes in clinical chemistry and hematology or histopathological lesions. There is also no evidence for systemic carcinogenicity of GO and MGO based on the available studies. However, initiation/promotion studies indicate that oral exposure to GO may exhibit genotoxic and tumor promoting activity locally in the gastrointestinal tract. From a 2-year chronic toxicity and carcinogenicity study in rats, a NOAEL for systemic toxicity of GO administered via drinking water of 25 mg/kg bw was reported based on reduced body weight and erosions/ulcer in the glandular stomach. Other non-neoplastic and neoplastic lesions were not observed. Acute toxicity of HMF is also low. From a 90-day repeated dose toxicity study in mice, a NOAEL of 94 mg/kg bw was derived based on cytoplasmic alterations of proximal tubule epithelial cells of the kidney. HMF was mostly negative in in vitro genotoxicity tests, although positive findings for mutagenicity were obtained under conditions that promote formation of the chemically reactive sulfuric acid ester 5-sulfoxymethylfurfural. There is some evidence of carcinogenic activity of HMF in female B6C3F1 mice based on increased incidences of hepatocellular adenoma, but not in male mice and rats of both sexes. Although data on oral bioavailability of glycated amino acids are mostly limited to CML, it appears that glycated amino acids may be absorbed from the gastrointestinal tract after oral exposure to their free and protein bound form. Glycated amino acids that are not absorbed in the intestine may be subject to metabolism by the gut microbiome. Glycated amino acids present in the systemic circulation are rapidly eliminated via the urine. Acute oral toxicity of CML is low. Studies in mice and rats reported changes in clinical chemistry parameters indicative of impaired renal and hepatic function. However, these changes were not dose-related and not supported by histopathological evaluation.Previous risk assessments of individual glycation compounds did not identify a health concern at estimated human exposures (GO, HMF) but also noted the lack of data to draw firm conclusions on health risks associated with exposure to MGO.To identify potential associations between dietary intake of defined glycation compounds and disease a systematic review was carried out according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) model, applying the quality criteria previously defined by the SKLM. Using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet, a systematic search in Pubmed (Medline), Scopus and Web of Science was performed. Although the present systematic review identified numerous studies that investigated an association between an "AGE-rich diet" and adverse health effects, only a subset of studies was found to comply with the quality criteria defined by the SKLM and was thus considered suitable to assess potential health risks of dietary glycation compounds.For each adverse health effect considered in this assessment, only limited numbers of human studies were identified. Although studies in humans offer the advantage of investigating effects at relevant human exposures, these studies did not provide compelling evidence for adverse effects of dietary glycation compounds. Animal studies identified in this systematic review provide some evidence for induction of impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to GO and MGO as representatives of dicarbonyl compounds. Only limited evidence points to a link between high intake of glycated amino acids and metabolic disorders. However, these effects were typically reported to occur at dose levels that exceed human dietary exposure, often by several orders of magnitude. Unfortunately, most studies employed only one dose level, precluding characterization of dose-response and derivation of a point of departure for riskassessment. While in vitro studies provide some evidence for a potential mechanistic link between individual glycation compounds and presumed adverse health effects, the clinical and toxicological relevance of the in vitro findings is often limited by the use of high concentrations of glycation compounds that by far exceed human dietary exposure and by insufficient evidence for corresponding adverse effects in vivo. A key question that has not been adequately considered in most studies investigating systemic effects of glycation compounds is the extent of oral bioavailability of dietary glycation compounds, including the form in which MRPs may be taken up (e.g. free vs. peptide bound glycated amino acids). Understanding how much dietary glycation compounds really add to the significant endogenous background is critical to appraise the relevance of dietary MRPs for human health.While it appears mechanistically plausible that glycation of dietary allergens may affect their allergenic potential, the currently available data do not support the hypothesis that dietary glycation compounds may increase the risk for diet-induced allergies. There are no human studies addressing the immunological effects of dietary AGEs. Accordingly, there are no data on whether dietary AGEs promote the development of allergies, nor whether existing allergies are enhanced or attenuated. In numerous in vitro studies, the IgG/E binding ability of antigens and therefore their allergenic potential has been predominantly reported to be reduced by glycation. However, some in vitro studies showed that glycated proteins bind to receptors of immunological cells, and thus may have promoting effects on immune response and inflammation.Although experimental data from animal studies provide some evidence that high doses of individual glycation compounds such as MGO and protein-bound CML may produce certain adverse health effects, including diabetogenic, cardiovascular, metabolic and renal effects, the doses required to achieve these effects by far exceed human dietary exposures. Of note, in the only long-term study identified, a high dose of MGO administered via drinking water to mice for 18 months had no adverse effects on the kidneys, cardiovascular system, or development of diabetes.Experimental data from animal studies provide evidence that high doses of defined glycation compounds such as MGO or protein-bound CML may affect glucose homeostasis. However, the doses required to produce these effects markedly exceed human dietary exposure. Results from human studies are inconclusive: Three short-term intervention studies suggested that diets rich in AGEs may impair glucose homeostasis, whereas one recent intervention study and two observational studies failed to show such an effect.For the cardiovascular system, there is some evidence from in vitro and in vivo studies that high concentrations of MRPs, well above the dietary exposure of humans, may enhance inflammation in the cardiovascular system, induce endothelial damage, increase blood pressure and increase the risk of thrombosis. Only a limited number of human intervention studies investigated potential effects of short-term exposure and longer-term effects of glycation compounds on the cardiovascular system, and yielded inconsistent results. The few observational studies available either found no association between dietary MRP intake and cardiovascular function or even reported beneficial effects. Therefore, currently no definitive conclusion on potential acute and chronic effects of dietary MRPs on inflammation and cardiovascular function can be drawn. However, there is currently also no convincing evidence that potential adverse effects on the cardiovascular system are triggered by dietary MRP intake.Furthermore, human studies did not provide evidence for an adverse effect of dietary MRPs on kidney function. In animal studies with high levels of oral intake, MGO was reported to cause structural and functional effects in the kidney. Several studies show that the concentration of modified proteins and amino acids, such as CML, increases significantly in kidney tissue after oral intake. One study showed a negative effect of a high-temperature-treated diet containing increased CML concentrations on kidney structure integrity and impaired glomerular filtration. The causative relationship of accumulation of dietary MRPs and a functional decline of the kidneys, however, needs further confirmation.With regard to gut health, there is some evidence for alterations in gut microflora composition and the production of individual short-chain fatty acids (SCFAs) upon dietary exposure to glycation compounds. However, this has not been linked to adverse health effects in humans and may rather reflect adaptation of the gut microbiota to changing nutrients. In particular, a human observational study and several animal studies did not find a correlation between the intake of glycation compounds and increased intestinal inflammation. In animal studies, positive effects of glycation compounds on gut tissue damage and dysbiosis during colitis were described.Considering clear evidence for DNA reactivity and genotoxicity of the dicarbonyl compounds GO, MGO and 3-DG, it is plausible to suspect that dicarbonyl compounds may induce mutations and cancer. Although there is some evidence for tumor promoting activity of GO locally in the gastrointestinal tract, the only guideline-compatible chronic rodent bioassays reported erosions and ulcer in the glandular stomach but no treatment-related neoplastic lesions. A recent multinational cohort study with focus on CEL, CML, and MG-H1 found no evidence to support the hypothesis that dietary AGEs are linked to cancer risk.Evidence for an association between human exposure to dietary glycation compounds and detrimental effects on the brain and on cognitive performance is far from being compelling. No human studies fully complying with the defined quality criteria were identified. A few experimental studies reported neuroinflammation and cognitive impairment following dietary MRP exposure, but these can be considered indicative at best and do not support firm conclusions for human health. In addition to utilizing exceedingly high dosages of individual agents like CML, harsh processing conditions causing a multitude of major process-related changes do not allow to convincingly reconcile effects observed with measured/supposed contents of free and protein-bound CML alone.Overall, although dietary glycation compounds have been claimed to contribute to a wide range of adverse health effects, the present critical evaluation of the literature allows the conclusion that the available data are insufficient, inadequate or inconclusive and do not compellingly support the hypothesis of human health risks being related to the presence of glycation compounds in food. The study limitations detailed above, together with the fact that a large number of studies did not comply with the defined quality criteria and therefore had to be excluded highlight the importance of performing adequately designed human or animal studies to inform scientifically reliable health risk assessment.To achieve this, high quality, dependable scientific cooperation within various disciplines is pivotal.


Asunto(s)
Dieta , Animales , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/toxicidad , Reacción de Maillard
4.
iScience ; 27(7): 110234, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39021797

RESUMEN

Recent studies have shown that elevated concentrations of unconjugated bilirubin (UCB) may be a protective host factor against the development of noncommunicable diseases (NCDs), whereas low levels of UCB are associated with the opposite effect. The results of this European study, in which 2,489 samples were tested for their UCB concentration using high-performance liquid chromatography (HPLC) and additional data from the MARK-AGE database were used for analysis, provide further evidence that elevated UCB concentrations are linked to a lower risk of developing NCDs and may act as a predictive marker of biological aging as individuals with elevated UCB concentrations showed favorable outcomes in metabolic health and oxidative-stress-related biomarkers. These findings underline the significance of studying individuals with moderate hyperbilirubinemia and investigate UCB routinely, also in the setting of aging, since this condition affects millions of people worldwide but has been underrepresented in clinical research and practice until now.

5.
Biotechnol Rep (Amst) ; 42: e00833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948353

RESUMEN

Despite powerful DNA repair systems, oxidative damage/modification to DNA is an inevitable side effect of metabolism, ionizing radiation, lifestyle habits, inflammatory pathologies such as type-2 diabetes or metabolic syndrome, cancer and natural aging. One of the most common oxidative DNA modifications is 8-OHdG (8­hydroxy-2'-deoxyguanosine), which is the most widely used marker in research and clinical diagnostics. 8-OHdG is easily and specifically detectable in various samples such as urine, plasma, cells and tissues via a large variety of methods like ELISA, HPLC, chromatographic methods, and immunochemistry. Formed by oxidation of guanine and being representative for the degree of DNA damage, 8-OHdG can be also used as biomarker for risk assessment of various cancers as well as degenerative diseases. Here, we present a highly specific, self-developed 8-OHdG antibody in successful comparison to a commercially one, tested in cells (FF95, HCT116, and HT22) and intestinal tissue, focusing on automatized evaluation via fluorescence/confocal microscopy.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39010299

RESUMEN

BACKGROUND: The ability of skeletal muscle to respond adequately to changes in nutrient availability, known as metabolic flexibility, is essential for the maintenance of metabolic health and loss of flexibility contributes to the development of diabetes and obesity. The tumour suppressor protein, p53, has been linked to the control of energy metabolism. We assessed its role in the acute control of nutrient allocation in skeletal muscle in the context of limited nutrient availability. METHODS: A mouse model with inducible deletion of the p53-encoding gene, Trp53, in skeletal muscle was generated using the Cre-loxP-system. A detailed analysis of nutrient metabolism in mice with control and knockout genotypes was performed under ad libitum fed and fasting conditions and in exercised mice. RESULTS: Acute deletion of p53 in myofibres of mice activated catabolic nutrient usage pathways even under ad libitum fed conditions, resulting in significantly increased overall energy expenditure (+10.6%; P = 0.0385) and a severe nutrient deficit in muscle characterized by depleted intramuscular glucose and glycogen levels (-62,0%; P < 0.0001 and -52.7%; P < 0.0001, respectively). This was accompanied by changes in marker gene expression patterns of circadian rhythmicity and hyperactivity (+57.4%; P = 0.0068). These metabolic changes occurred acutely, within 2-3 days after deletion of Trp53 was initiated, suggesting a rapid adaptive response to loss of p53, which resulted in a transient increase in lactate release to the circulation (+46.6%; P = 0.0115) from non-exercised muscle as a result of elevated carbohydrate mobilization. Conversely, an impairment of proteostasis and amino acid metabolism was observed in knockout mice during fasting. During endurance exercise testing, mice with acute, muscle-specific Trp53 inactivation displayed an early exhaustion phenotype with a premature shift in fuel usage and reductions in multiple performance parameters, including a significantly reduced running time and distance (-13.8%; P = 0.049 and -22.2%; P = 0.0384, respectively). CONCLUSIONS: These findings suggest that efficient nutrient conservation is a key element of normal metabolic homeostasis that is sustained by p53. The homeostatic state in metabolic tissues is actively maintained to coordinate efficient energy conservation and metabolic flexibility towards nutrient stress. The acute deletion of Trp53 unlocks mechanisms that suppress the activity of nutrient catabolic pathways, causing substantial loss of intramuscular energy stores, which contributes to a fasting-like state in muscle tissue. Altogether, these findings uncover a novel function of p53 in the short-term regulation of nutrient metabolism in skeletal muscle and show that p53 serves to maintain metabolic homeostasis and efficient energy conservation.

8.
Arch Toxicol ; 98(7): 1967-1973, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806718

RESUMEN

Since 2006, the responsible regulatory bodies have proposed five health-based guidance values (HBGV) for bisphenol A (BPA) that differ by a factor of 250,000. This range of HBGVs covers a considerable part of the range from highly toxic to relatively non-toxic substances. As such heterogeneity of regulatory opinions is a challenge not only for scientific risk assessment but also for all stakeholders, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) analyzed the reasons for the current discrepancy and used this example to suggest improvements for the process of HBGV recommendations. A key aspect for deriving a HBGV is the selection of appropriate studies that allow the identification of a point of departure (PoD) for risk assessment. In the case of BPA, the HBGV derived in the 2023 EFSA assessment was based on a study that reported an increase of Th17 cells in mice with a benchmark dose lower bound (BMDL40) of 0.53 µg/kg bw/day. However, this study does not comply with several criteria that are important for scientific risk assessment: (1) the selected end-point, Th17 cell frequency in the spleen of mice, is insufficiently understood with respect to health outcomes. (2) It is unclear, by which mechanism BPA may cause an increase in Th17 cell frequency. (3) It is unknown, if an increase of Th17 cell frequency in rodents is comparably observed in humans. (4) Toxicokinetics were not addressed. (5) Neither the raw data nor the experimental protocols are available. A further particularly important criterion (6) is independent data confirmation which is not available in the present case. Previous studies using other readouts did not observe immune-related adverse effects such as inflammation, even at doses orders of magnitude higher than in the Th17 cell-based study. The SKLM not only provides here key criteria for the use of such studies, but also suggests that the use of such a "checklist" requires a careful and comprehensive scientific judgement of each item. It is concluded that the Th17 cell-based study data do not represent an adequate basis for risk assessment of BPA.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Medición de Riesgo/métodos , Animales , Humanos , Ratones , Relación Dosis-Respuesta a Droga , Guías como Asunto
9.
J Trace Elem Med Biol ; 84: 127462, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701651

RESUMEN

Aging is associated with a decline in physiological functions and an increased risk of age-related diseases, emphasizing the importance of identifying dietary strategies for healthy aging. Minerals play a crucial role in maintaining optimal health during aging, making them relevant targets for investigation. Therefore, we aimed to analyze the effect of different dietary pattern on mineral status in the elderly. We included 502 individuals aged 50-80 years in a 36-month randomized controlled trial (RCT) (NutriAct study). This article focuses on the results within the two-year intervention period. NutriAct is not a mineral-modulating-targeted intervention study, rather examining nutrition in the context of healthy aging in general. However, mineral status might be affected in an incidental manner. Participants were assigned to either NutriAct dietary pattern (proportionate intake of total energy consumption (%E) of 35-45 %E carbohydrates, 35-40 %E fats, and 15-25 %E protein) or the German Nutrition Society (DGE) dietary pattern (proportionate intake of total energy consumption (%E) of 55 %E carbohydrates, 30 %E fats, and 15 %E protein), differing in the composition of macronutrients. Data from 368 participants regarding dietary intake (energy, calcium, magnesium, iron, and zinc) and serum mineral concentrations of calcium, magnesium, iron, copper, zinc, selenium, iodine, and manganese, free zinc, and selenoprotein P were analyzed at baseline, as well as after 12 and 24 months to gain comprehensive insight into the characteristics of the mineral status. Additionally, inflammatory status - sensitive to changes in mineral status - was assessed by measurement of C-reactive protein and interleukin-6. At baseline, inadequate dietary mineral intake and low serum concentrations of zinc and selenium were observed in both dietary patterns. Throughout two years, serum zinc concentrations decreased, while an increase of serum selenium, manganese and magnesium concentrations was observable, likely influenced by both dietary interventions. No significant changes were observed for serum calcium, iron, copper, or iodine concentrations. In conclusion, long-term dietary interventions can influence serum mineral concentrations in a middle-aged population. Our findings provide valuable insights into the associations between dietary habits, mineral status, and disease, contributing to dietary strategies for healthy aging.


Asunto(s)
Dieta , Envejecimiento Saludable , Minerales , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Alemania , Envejecimiento Saludable/sangre , Minerales/sangre , Estado Nutricional
10.
Nutrients ; 16(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474753

RESUMEN

This study explores age- and time-dependent variations in postprandial micronutrient absorption after a micronutrient-rich intervention meal within the Biomiel (bioavailability of micronutrients in elderly) study. Comprising 43 healthy participants, the study compares young (n = 21; mean age 26.90 years) and old (n = 22; mean age 66.77 years) men and women, analyzing baseline concentrations and six-hour postprandial dynamics of iron (Fe), copper (Cu), zinc (Zn), selenium (Se), iodine (I), free zinc (fZn), vitamin C, retinol, lycopene, ß-carotene, α-tocopherol, and γ-tocopherol, along with 25(OH) vitamin D (quantified only at baseline). Methodologically, quantifications in serum or plasma were performed at baseline and also at 90, 180, 270, and 360 min postprandially. Results reveal higher baseline serum Zn and plasma lycopene concentrations in the young group, whereas Cu, Se, Cu/Zn ratio, 25(OH) vitamin D, α-tocopherol, and γ-tocopherol were higher in old participants. Postprandial variability of Zn, vitamin C, and lycopene showed a strong time-dependency. Age-related differences in postprandial metabolism were observed for Se, Cu, and I. Nevertheless, most of the variance was explained by individuality. Despite some limitations, this study provides insights into postprandial micronutrient metabolism (in serum/plasma), emphasizing the need for further research for a comprehensive understanding of this complex field. Our discoveries offer valuable insights for designing targeted interventions to address and mitigate micronutrient deficiencies in older adults, fostering optimal health and well-being across the lifespan.


Asunto(s)
Selenio , Oligoelementos , Masculino , Humanos , Femenino , Anciano , Adulto , Micronutrientes , Licopeno , alfa-Tocoferol , Carotenoides , gamma-Tocoferol , Vitaminas , Vitamina A , Zinc , Ácido Ascórbico , Vitamina D
11.
Geroscience ; 46(2): 1657-1669, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37715843

RESUMEN

Growth differentiation factor-15 (GDF15) might be involved in the development of cognitive frailty and depression. Therefore, we evaluated cross-sectional associations of plasma GDF15 with combined cognitive-frailty-and-depression in older (i.e. ≥ 55 years) and younger adults of the MARK-AGE study. In the present work, samples and data of MARK-AGE ("European study to establish bioMARKers of human AGEing") participants (N = 2736) were analyzed. Cognitive frailty was determined by the global cognitive functioning score (GCF) and depression by the Self-Rating Depression Scale (SDS score). Adults were classified into three groups: (I) neither-cognitive-frailty-nor-depression, (II) either-cognitive-frailty-or-depression or (III) both-cognitive-frailty-and-depression. Cross-sectional associations were determined by unadjusted and by age, BMI, sex, comorbidities and hsCRP-adjusted linear and logistic regression analyses. Cognitive frailty, depression, age and GDF15 were significantly related within the whole study sample. High GDF15 levels were significantly associated with both-cognitive-frailty-and-depression (adjusted ß = 0.177 [0.044 - 0.310], p = 0.009), and with low GCF scores and high SDS scores. High GDF15 concentrations and quartiles were significantly associated with higher odds to have both-cognitive-frailty-and-depression (adjusted odds ratio = 2.353 [1.267 - 4.372], p = 0.007; and adjusted odds ratio = 1.414 [1.025 - 1.951], p = 0.035, respectively) independent of age, BMI, sex, comorbidities and hsCRP. These associations remained significant when evaluating older adults. We conclude that plasma GDF15 concentrations are significantly associated with combined cognitive-frailty-and-depression status and, with cognitive frailty and depressive symptoms separately in old as well as young community-dwelling adults.


Asunto(s)
Fragilidad , Humanos , Anciano , Anciano Frágil/psicología , Depresión/epidemiología , Proteína C-Reactiva , Estudios Transversales , Cognición , Factor 15 de Diferenciación de Crecimiento
12.
Redox Biol ; 69: 102995, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142584

RESUMEN

Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.


Asunto(s)
Isquemia Miocárdica , Ruido del Transporte , Animales , Humanos , Ruido del Transporte/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Estudios de Cohortes , Oxidación-Reducción
13.
Commun Biol ; 6(1): 1240, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066057

RESUMEN

Skeletal muscle aging is characterized by the loss of muscle mass, strength and function, mainly attributed to the atrophy of glycolytic fibers. Underlying mechanisms driving the skeletal muscle functional impairment are yet to be elucidated. To unbiasedly uncover its molecular mechanisms, we recurred to gene expression and metabolite profiling in a glycolytic muscle, Extensor digitorum longus (EDL), from young and aged C57BL/6JRj mice. Employing multi-omics approaches we found that the main age-related changes are connected to mitochondria, exhibiting a downregulation in mitochondrial processes. Consistent is the altered mitochondrial morphology. We further compared our mouse EDL aging signature with human data from the GTEx database, reinforcing the idea that our model may recapitulate muscle loss in humans. We are able to show that age-related mitochondrial downregulation is likely to be detrimental, as gene expression signatures from commonly used lifespan extending interventions displayed the opposite direction compared to our EDL aging signature.


Asunto(s)
Mitocondrias , Músculo Esquelético , Animales , Humanos , Ratones , Envejecimiento/genética , Regulación hacia Abajo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo
14.
Nutrients ; 15(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960282

RESUMEN

The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that has been reported to have neuroprotective effects. The health effects of KD might be linked to an altered gut microbiome, which plays a major role in host health, leading to neuroprotective effects via the gut-brain axis. However, results from different studies, most often based on the 16S rRNA gene and metagenome sequencing, have been inconsistent. In this study, we assessed the effect of a 4-week KD compared to a western diet (WD) on the colonic microbiome of female C57Bl/6J mice by analyzing fecal samples using fluorescence in situ hybridization. Our results showed distinct changes in the total number of gut bacteria following the 4-week KD, in addition to changes in the composition of the microbiome. KD-fed mice showed higher absolute numbers of Actinobacteria (especially Bifidobacteria spp.) and lower absolute levels of Proteobacteria, often linked to gut inflammation, in comparison with WD-fed mice. Furthermore, an increased abundance of the typically rare genus Atopobium was observed. These changes may indicate the possible anti-inflammatory effects of the KD. However, since the overall changes in the microbiota seem low, the KD effects might be linked to the differential abundance of only a few key genera in mice.


Asunto(s)
Actinobacteria , Dieta Cetogénica , Microbiota , Fármacos Neuroprotectores , Femenino , Ratones , Animales , ARN Ribosómico 16S/genética , Hibridación Fluorescente in Situ , Dieta Alta en Grasa , Bacterias/genética , Actinobacteria/genética , Ratones Endogámicos C57BL
15.
Front Endocrinol (Lausanne) ; 14: 1277866, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941910

RESUMEN

Mitochondria play multifaceted roles in cellular function, and impairments across domains of mitochondrial biology are known to promote cellular integrated stress response (ISR) pathways as well as systemic metabolic adaptations. However, the temporal dynamics of specific mitochondrial ISR related to physiological variations in tissue-specific energy demands remains unknown. Here, we conducted a comprehensive 24-hour muscle and plasma profiling of male and female mice with ectopic mitochondrial respiratory uncoupling in skeletal muscle (mUcp1-transgenic, TG). TG mice are characterized by increased muscle ISR, elevated oxidative stress defense, and increased secretion of FGF21 and GDF15 as ISR-induced myokines. We observed a temporal signature of both cell-autonomous and systemic ISR in the context of endocrine myokine signaling and cellular redox balance, but not of ferroptotic signature which was also increased in TG muscle. We show a progressive increase of muscle ISR on transcriptional level during the active phase (night time), with a subsequent peak in circulating FGF21 and GDF15 in the early resting phase. Moreover, we found highest levels of muscle oxidative defense (GPX and NQO1 activity) between the late active to early resting phase, which could aim to counteract excessive iron-dependent lipid peroxidation and ferroptosis in muscle of TG mice. These findings highlight the temporal dynamics of cell-autonomous and endocrine ISR signaling under skeletal muscle mitochondrial uncoupling, emphasizing the importance of considering such dissociation in translational strategies and sample collection for diagnostic biomarker analysis.


Asunto(s)
Ferroptosis , Ratones , Masculino , Femenino , Animales , Ratones Transgénicos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Oxidación-Reducción
16.
Mech Ageing Dev ; 216: 111870, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37689316

RESUMEN

Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Anciano , Enfermedades Cardiovasculares/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Obesidad/metabolismo , Metabolismo Energético , Envejecimiento
17.
Mol Nutr Food Res ; 67(18): e2300137, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37465844

RESUMEN

SCOPE: Maillard reaction products (MRPs) are believed to interact with the receptor for advanced glycation endproducts (RAGE) and lead to a pro-inflammatory cellular response. The structural basis for this interaction is scarcely understood. This study investigates the effect of individual lysine modifications in free form or bound to casein on human colon cancer cells. METHODS AND RESULTS: Selectively glycated casein containing either protein-bound N-ε-carboxymethyllysine (CML), N-ε-fructosyllysine (FL), or pyrraline is prepared and up to 94%, 97%, and 61% of lysine modification could be attributed to CML, FL, or pyrraline, respectively. HCT 116 cells are treated with free CML, pyrraline, FL, or modified casein for 24 h. Native casein is used as control. Intracellular MRP content is analyzed by UPLC-MS/MS. Microscopic analysis of the transcription factors shows no activation of NFκB by free or protein-bound FL or CML, whereas casein containing protein-bound pyrraline activates Nrf2. RAGE expression is not influenced by free or casein-bound MRPs. Activation of Nrf2 by pyrraline-modified casein is confirmed by analyzing Nrf2 target proteins NAD(P)H dehydrogenase (quinone 1) (NQO1) and heme oxygenase-1 (HO-1). CONCLUSION: Studies on the biological effects of glycated proteins require an individual consideration of defined structures. General statements on the effect of "AGEs" in biological systems are scientifically unsound.


Asunto(s)
Lisina , Reacción de Maillard , Humanos , Lisina/metabolismo , Factor 2 Relacionado con NF-E2 , Caseínas/química , Cromatografía Liquida , Receptor para Productos Finales de Glicación Avanzada , Células HCT116 , Espectrometría de Masas en Tándem , Productos Finales de Glicación Avanzada/química
18.
Redox Biol ; 64: 102803, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392516

RESUMEN

Inflammatory bowel disease (IBD) is an immune-mediated gut dysfunction, which might also be associated with an inflammatory phenotype in the liver. It is known that the nutritional intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is inversely correlated to the severity and occurrence of IBD. In order to investigate whether n-3 PUFA can also reduce liver inflammation and oxidative liver damage due to colon inflammation, we explored the dextran sulfate sodium (DSS)-induced colitis model in wild-type and fat-1 mice with endogenously increased n-3 PUFA tissue content. Besides confirming previous data of alleviated DSS-induced colitis in the fat-1 mouse model, the increase of n-3 PUFA also resulted in a significant reduction of liver inflammation and oxidative damage in colitis-affected fat-1 mice as compared to wild-type littermates. This was accompanied by a remarkable increase of established inflammation-dampening n-3 PUFA oxylipins, namely docosahexaenoic acid-derived 19,20-epoxydocosapentaenoic acid and eicosapentaenoic acid-derived 15-hydroxyeicosapentaenoic acid and 17,18-epoxyeicosatetraenoic acid. Taken together, these observations demonstrate a strong inverse correlation between the anti-inflammatory lipidome derived from n-3 PUFA and the colitis-triggered inflammatory changes in the liver by reducing oxidative liver stress.


Asunto(s)
Colitis , Ácidos Grasos Omega-3 , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Ratones Transgénicos , Ácidos Grasos Omega-3/efectos adversos , Colitis/inducido químicamente , Colitis/genética , Inflamación/genética , Hígado , Estrés Oxidativo
19.
Nutrients ; 15(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37432362

RESUMEN

An inadequate selenium (Se) status can accelerate the aging process, increasing the vulnerability to age-related diseases. The study aimed to investigate plasma Se and Se species in a large population, including 2200 older adults from the general population (RASIG), 514 nonagenarian offspring (GO), and 293 GO Spouses (SGO). Plasma Se levels in women exhibit an inverted U-shaped pattern, increasing with age until the post-menopausal period and then declining. Conversely, men exhibit a linear decline in plasma Se levels with age. Subjects from Finland had the highest plasma Se values, while those from Poland had the lowest ones. Plasma Se was influenced by fish and vitamin consumption, but there were no significant differences between RASIG, GO, and SGO. Plasma Se was positively associated with albumin, HDL, total cholesterol, fibrinogen, and triglycerides and negatively associated with homocysteine. Fractionation analysis showed that Se distribution among plasma selenoproteins is affected by age, glucometabolic and inflammatory factors, and being GO or SGO. These findings show that sex-specific, nutritional, and inflammatory factors play a crucial role in the regulation of Se plasma levels throughout the aging process and that the shared environment of GO and SGO plays a role in their distinctive Se fractionation.


Asunto(s)
Selenio , Femenino , Humanos , Animales , Masculino , Nonagenarios , Vitaminas , Conducta Alimentaria
20.
Antioxidants (Basel) ; 12(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37371918

RESUMEN

The steady-state redox status is physiologically important and therefore homeostatically maintained. Changes in the status result in signaling (eustress) or oxidative damage (distress). Oxidative stress (OS) is a hard-to-quantitate term that can be estimated only based on different biomarkers. Clinical application of OS, particularly for selective antioxidant treatment of people under oxidative stress, requires quantitative evaluation and is limited by the lack of universal biomarkers to describe it. Furthermore, different antioxidants have different effects on the redox state. Hence, as long as we do not have the possibility to determine and quantify OS, therapeutic interventions by the "identify-and-treat" approach cannot be assessed and are, therefore, not likely to be the basis for selective preventive measures against oxidative damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA