Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409698, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924667

RESUMEN

While the ambient N2 reduction to ammonia (NH3) using H2O as hydrogen source (2N2+6H2O=4NH3+3O2) is known as a promising alternative to the Haber-Bosch process, the high bond energy of N≡N bond leads to the extremely low NH3 yield. Herein, we report a highly efficient catalytic system for ammonia synthesis using the low-temperature dielectric barrier discharge plasma to activate inert N2 molecules into the activated nitrogen species, which can efficiently react with the confined and concentrated H2O molecules in porous metal-organic framework (MOF) reactors with V3+, Cr3+, Mn3+, Fe3+, Co2+, Ni2+ and Cu2+ ions. Specially, the Fe-based catalyst MIL-100(Fe) causes a superhigh NH3 yield of 22.4 mmol g-1 h-1. The investigation of catalytic performance and systematic characterizations of MIL-100(Fe) during the plasma-driven catalytic reaction unveils that the in situ generated defective Fe-O clusters are the highly active sites and NH3 molecules indeed form inside the MIL-100(Fe) reactor. The theoretical calculation reveals that the porous MOF catalysts have different adsorption capacity for nitrogen species on different catalytic metal sites, where the optimal MIL-100(Fe) has the lowest energy barrier for the rate-limiting *NNH formation step, significantly enhancing efficiency of nitrogen fixation.

2.
Small ; : e2403808, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770988

RESUMEN

Direct electrosynthesis of hydrogen peroxide (H2O2) with high production rate and high selectivity through the two-electron oxygen reduction reaction (2e-ORR) offers a sustainable alternative to the energy-intensive anthraquinone technology but remains a challenge. Herein, a low-coordinated, 2D conductive Zn/Cu metal-organic framework supported on hollow nanocube structures (ZnCu-MOF (H)) is rationally designed and synthesized. The as-prepared ZnCu-MOF (H) catalyst exhibits substantially boosted electrocatalytic kinetics, enhanced H2O2 selectivity, and ultra-high Faradaic efficiency for 2e-ORR process in both alkaline and neutral conditions. Electrochemical measurements, operando/quasi in situ spectroscopy, and theoretical calculation demonstrate that the introduction of Cu atoms with low-coordinated structures induces the transformation of active sites, resulting in the beneficial electron transfer and the optimized energy barrier, thereby improving the electrocatalytic activity and selectivity.

3.
Angew Chem Int Ed Engl ; 63(29): e202406007, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687057

RESUMEN

While the mild production of syngas (a mixture of H2 and CO) from CO2 and H2O is a promising alternative to the coal-based chemical engineering technologies, the inert nature of CO2 molecules, unfavorable splitting pathways of H2O and unsatisfactory catalysts lead to the challenge in the difficult integration of high CO2 conversion efficiency with produced syngas with controllable H2/CO ratios in a wide range. Herein, we report an efficient plasma-driven catalytic system for mild production of pure syngas over porous metal-organic framework (MOF) catalysts with rich confined H2O molecules, where their syngas production capacity is regulated by the in situ evolved ligand defects and the plasma-activated intermediate species of CO2 molecules. Specially, the Cu-based catalyst system achieves 61.9 % of CO2 conversion and the production of pure syngas with wide H2/CO ratios of 0.05 : 1-4.3 : 1. As revealed by the experimental and theoretical calculation results, the in situ dynamic structure evolution of Cu-containing MOF catalysts favors the generation of coordinatively unsaturated metal active sites with optimized geometric and electronic characteristics, the adsorption of reactants, and the reduced energy barriers of syngas-production potential-determining steps of the hydrogenation of CO2 to *COOH and the protonation of H2O to *H.

4.
Angew Chem Int Ed Engl ; 63(22): e202404258, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38454791

RESUMEN

Engineering advantageous defects to construct well-defined active sites in catalysts is promising but challenging to achieve efficient photocatalytic NH3 synthesis from N2 and H2O due to the chemical inertness of N2 molecule. Here, we report defective Fe-based metal-organic framework (MOF) photocatalysts via a non-thermal plasma-assisted synthesis strategy, where their NH3 production capability is synergistically regulated by two types of defects, namely, bridging organic ligands and terminal inorganic ligands (OH- and H2O). Specially, the optimized MIL-100(Fe) catalysts, where there are only terminal inorganic ligand defects and coexistence of dual defects, exhibit the respective 1.7- and 7.7-fold activity enhancement comparable to the pristine catalyst under visible light irradiation. As revealed by experimental and theoretical calculation results, the dual defects in the catalyst induce the formation of abundant and highly accessible coordinatively unsaturated Fe active sites and synergistically optimize their geometric and electronic structures, which favors the injection of more d-orbital electrons in Fe sites into the N2 π* antibonding orbital to achieve N2 activation and the formation of a key intermediate *NNH in the reaction. This work provides a guidance on the rational design and accurate construction of porous catalysts with precise defective structures for high-performance activation of catalytic molecules.

5.
Angew Chem Int Ed Engl ; 63(8): e202317572, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38116911

RESUMEN

Exploring unique single-atom sites capable of efficiently reducing O2 to H2 O2 while being inert to H2 O2 decomposition under light conditions is significant for H2 O2 photosynthesis, but it remains challenging. Herein, we report the facile design and fabrication of polymeric carbon nitride (CN) decorated with single-Zn sites that have tailorable local coordination environments, which is enabled by utilizing different Zn salt anions. Specifically, the O atom from acetate (OAc) anion participates in the coordination of single-Zn sites on CN, forming asymmetric Zn-N3 O moiety on CN (denoted as CN/Zn-OAc), in contrast to the obtained Zn-N4 sites when sulfate (SO4 ) is adopted (CN/Zn-SO4 ). Both experimental and theoretical investigations demonstrate that the Zn-N3 O moiety exhibits higher intrinsic activity for O2 reduction to H2 O2 than the Zn-N4 moiety. This is attributed to the asymmetric N/O coordination, which promotes the adsorption of O2 and the formation of the key intermediate *OOH on Zn sites due to their modulated electronic structure. Moreover, it is inactive for H2 O2 decomposition under both dark and light conditions. As a result, the optimized CN/Zn-OAc catalyst exhibits significantly improved photocatalytic H2 O2 production activity under visible light irradiation.

6.
Angew Chem Int Ed Engl ; 62(45): e202312145, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37728430

RESUMEN

Constructing multifunctional interphases to suppress the rampant Zn dendrite growth and detrimental side reactions is crucial for Zn anodes. Herein, a phytic acid (PA)-ZnAl coordination compound is demonstrated as a versatile interphase layer to stabilize Zn anodes. The zincophilic PA-ZnAl layer can manipulate Zn2+ flux and promote rapid desolvation kinetics, ensuring the uniform Zn deposition with dendrite-free morphology. Moreover, the robust PA-ZnAl protective layer can effectively inhibit the hydrogen evolution reaction and formation of byproducts, further contributing to the reversible Zn plating/stripping with high Coulombic efficiency. As a result, the Zn@PA-ZnAl electrode shows a lower Zn nucleation overpotential and higher Zn2+ transference number compared with bare Zn. The Zn@PA-ZnAl symmetric cell exhibits a prolonged lifespan of 650 h tested at 5 mA cm-2 and 5 mAh cm-2 . Furthermore, the assembled Zn battery full cell based on this Zn@PA-ZnAl anode also delivers decent cycling stability even under harsh conditions.

7.
Angew Chem Int Ed Engl ; 62(44): e202310847, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37698180

RESUMEN

Developing highly efficient catalytic sites for O2 reduction to H2 O2 , while ensuring the fast injection of energetic electrons into these sites, is crucial for artificial H2 O2 photosynthesis but remains challenging. Herein, we report a strongly coupled hybrid photocatalyst comprising polymeric carbon nitride (CN) and a two-dimensional conductive Zn-containing metal-organic framework (Zn-MOF) (denoted as CN/Zn-MOF(lc)/400; lc, low crystallinity; 400, annealing temperature in °C), in which the catalytic capability of Zn-MOF(lc) for H2 O2 production is unlocked by the annealing-induced effects. As revealed by experimental and theoretical calculation results, the Zn sites coordinated to four O (Zn-O4 ) in Zn-MOF(lc) are thermally activated to a relatively electron-rich state due to the annealing-induced local structure shrinkage, which favors the formation of a key *OOH intermediate of 2e- O2 reduction on these sites. Moreover, the annealing treatment facilitates the photoelectron migration from the CN photocatalyst to the Zn-MOF(lc) catalytic unit. As a result, the optimized catalyst exhibits dramatically enhanced H2 O2 production activity and excellent stability under visible light irradiation.

8.
Poult Sci ; 102(10): 102948, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37604021

RESUMEN

The H4 subtype of avian influenza viruses has been widely distributed among wild birds. During the surveillance of the avian influenza virus in Shanghai from 2019 to 2021, a total of 4,451 samples were collected from wild birds, among which 46 H4 subtypes of avian influenza viruses were identified, accounting for 7.40% of the total positive samples. The H4 subtype viruses have a wide range of hosts, including the spot-billed duck, common teal, and other wild birds in Anseriformes. Among all H4 subtypes, the most abundant are the H4N2 viruses. To clarify the genetic characteristics of H4N2 viruses, the whole genome sequences of 20 H4N2 viruses were analyzed. Phylogenetical analysis showed that all 8 genes of these viruses belonged to the Eurasian lineage and closely clustered with low pathogenic avian influenza viruses from countries along the East Asia-Australia migratory route. However, the PB1 gene of 1 H4N2 virus (NH21920) might provide its internal gene for highly pathogenic avian influenza H5N8 viruses in Korea and Japan. At least 10 genotypes were identified in these viruses, indicating that they underwent multiple complex recombination events. Our study has provided a better epidemiological understanding of the H4N2 viruses in wild birds. Considering the mutational potential, comprehensive surveillance of the H4N2 virus in both poultry and wild birds is imperative.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Pollos , China/epidemiología , Animales Salvajes , Virus de la Influenza A/genética , Patos , Filogenia
9.
Adv Mater ; : e2306047, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37496431

RESUMEN

Manipulating the coordination environment and electron distribution for heterogeneous catalysts at the atomic level is an effective strategy to improve electrocatalytic performance but remains challenging. Herein, atomically dispersed Fe and Co anchored on nitrogen, phosphorus co-doped carbon hollow nanorod structures (FeCo-NPC) are rationally designed and synthesized. The as-prepared FeCo-NPC catalyst exhibits significantly boosted electrocatalytic kinetics and greatly upshifts the half-wave potential for the oxygen reduction reaction. Furthermore, when utilized as the cathode, the FeCo-NPC catalyst also displays excellent zinc-air battery performance. Experimental and theoretical results demonstrate that the introduction of single Co atoms with Co-N/P coordination around isolated Fe atoms induces asymmetric electron distribution, resulting in the suitable adsorption/desorption ability for oxygen intermediates and the optimized reaction barrier, thereby improving the electrocatalytic activity.

10.
J Insect Sci ; 23(3)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37294686

RESUMEN

Thrips hawaiiensis (Morgan) (Thysanoptera: Thripidae) is a sap-sucking pest that seriously damages several crops and reduces their economic value. Exposure to low concentrations of insecticides may have a sublethal effect on surviving insects. In order to provide a reference for the rational application of emamectin benzoate, its sublethal effects on the development and reproduction of T. hawaiiensis were evaluated. Pupal development time was significantly shorter in T. hawaiiensis treated with sublethal concentrations of emamectin benzoate (LC10 and LC20) than in control. Female adult longevity and female total longevity were significantly longer following LC20 treatment than in the control and LC10 treatment groups. Nevertheless, male adult longevity and male total longevity were significantly shorter in the LC10 treatment group than in the control and LC20 treatment groups. The sublethal concentration of emamectin benzoate (LC20) significantly shortened the preadult stages and the mean generation. Meanwhile, it significantly increased the finite rate of increase, intrinsic rate of increase, and net reproductive rate. The fecundity was significantly higher after LC20 treatment than after LC10 and control treatments. Compared with the control group, the LC10 and LC20 groups of T. hawaiiensis adults showed a significantly higher expression of the vitellogenin (Vg) and vitellogenin receptor (VgR) genes, which played a key role in increasing their fecundity. These findings suggest that short-term exposure to sublethal concentrations of emamectin benzoate may lead to a resurgence and secondary outbreak of T. hawaiiensis infestation. The results have practical applications for the management of this important and noxious pest.


Asunto(s)
Insecticidas , Thysanoptera , Femenino , Masculino , Animales , Thysanoptera/genética , Vitelogeninas/genética , Reproducción , Insecticidas/toxicidad , Expresión Génica
11.
Angew Chem Int Ed Engl ; 62(26): e202303529, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37132610

RESUMEN

Vanadium based compounds are promising cathode materials for aqueous zinc (Zn)-ion batteries (AZIBs) due to their high specific capacity. However, the narrow interlayer spacing, low intrinsic conductivity and the vanadium dissolution still restrict their further application. Herein, we present an oxygen-deficient vanadate pillared by carbon nitride (C3 N4 ) as the cathode for AZIBs through a facile self-engaged hydrothermal strategy. Of note, C3 N4 nanosheets can act as both the nitrogen source and pre-intercalation species to transform the orthorhombic V2 O5 into layered NH4 V4 O10 with expanded interlayer spacing. Owing to the pillared structure and abundant oxygen vacancies, both the Zn2+ ion (de)intercalation kinetics and the ionic conductivity in the NH4 V4 O10 cathode are promoted. As a result, the NH4 V4 O10 cathode delivers exceptional Zn-ion storage ability with a high specific capacity of about 370 mAh g-1 at 0.5 A g-1 , a high-rate capability of 194.7 mAh g-1 at 20 A g-1 and a stable cycling performance of 10 000 cycles.


Asunto(s)
Vanadatos , Compuestos de Vanadio , Zinc , Vanadio , Iones , Oxígeno
12.
Chem Asian J ; 18(8): e202300033, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36775799

RESUMEN

To rationally design photocatalysts with high generation rate and selectivity of target product remains an ongoing challenge for CO2 conversion in pure H2 O. Herein, from the viewpoint of enhancing the separation efficiency of photoinduced electron-hole pairs and the adsorption ability of CO2 molecule, we have constructed a series of Z-scheme defective heterojunctions of BiOBr nanosheets and hollow NH2 -functionalized metal-organic framework (MOF) MIL-125 with Ti ions as metal centers (noted as NH2 -MIL-125(Ti)). Systematic characterization demonstrates that the BiOBr nanosheets are anchored on the surface of hollow NH2 -MIL-125(Ti), which facilitates the efficient visible-light-driven catalytic reduction of CO2 to CO with nearly 100% selectivity by pure H2 O. Especially, the CO generation rate of optimized catalyst with oxygen vacancies reaches 459.7 µmol g-1 h-1 , which is higher than those of all the previously reported photocatalysts without sacrificial reagents. This approach provides a new insight for using inorganic semiconductors to fabricate semiconducting MOFs for high-efficiency photocatalytic reduction CO2 into value-added chemicals by pure H2 O.

13.
Sci Rep ; 12(1): 18499, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323768

RESUMEN

Highly time-resolved mechanical measurements, modeling, and simulations show that large shear bands in bulk metallic glasses nucleate in a manner similar to cracks. When small slips reach a nucleation size, the dynamics changes and the shear band rapidly grows to span the entire sample. Smaller nucleation sizes imply lower ductility. Ductility can be increased by increasing the nucleation size relative to the maximum ("cutoff") shear band size at the upper edge of the power law scaling range of their size distribution. This can be achieved in three ways: (1) by increasing the nucleation size beyond this cutoff size of the shear bands, (2) by keeping all shear bands smaller than the nucleation size, or (3) by choosing a sample size smaller than the nucleation size. The discussed methods can also be used to rapidly order metallic glasses according to ductility.

14.
Angew Chem Int Ed Engl ; 61(45): e202212542, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36093883

RESUMEN

Trapping the active sites on the exterior surface of hollow supports can reduce mass transfer resistance and enhance atomic utilization. Herein, we report a facile chemical vapor deposition strategy to synthesize single-Ni atoms decorated hollow S/N-doped football-like carbon spheres (Ni SAs@S/N-FCS). Specifically, the CdS@3-aminophenol/formaldehyde is carbonized into S/N-FCS. The gas-migrated Ni species are anchored on the surface of S/N-FCS simultaneously, yielding Ni SAs@S/N-FCS. The obtained catalyst exhibits outstanding performance for alkaline oxygen evolution reaction (OER) with an overpotential of 249 mV at 10 mA cm-2 , a small Tafel slope of 56.5 mV dec-1 , and ultra-long stability up to 166 hours without obvious fading. Moreover, the potential-driven dynamic behaviors of Ni-N4 sites and the contribution of the S dopant at different locations in the matrix to the OER activity are revealed by the operando X-ray absorption spectroscopy and theoretical calculations, respectively.

15.
Adv Mater ; 34(42): e2204865, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36048463

RESUMEN

Despite suffering from slow charge-carrier mobility, photocatalysis is still an attractive and promising technology toward producing green fuels from solar energy. An effective approach is to design and fabricate advanced architectural materials as photocatalysts to enhance the performance of semiconductor-based photocatalytic systems. Herein, metal-organic-framework-derived hierarchically ordered porous nitrogen and carbon co-doped ZnO (N-C-ZnO) structures are developed as nanoreactors with decorated CoOx nanoclusters for CO2 -to-CO conversion driven by visible light. Introduction of hierarchical nanoarchitectures with highly ordered interconnected meso-macroporous channels shows beneficial properties for photocatalytic reduction reactions, including enhanced mobility of charge carriers throughout the highly accessible framework, maximized exposure of active sites, and inhibited recombination of photoinduced charge carriers. Density functional theory calculations further reveal the key role of CoOx nanoclusters with high affinity to CO2 molecules, and the CoO bonds formed on the surface of the composite exhibit stronger charge redistribution. As a result, the obtained CoOx /N-C-ZnO demonstrates enhanced photocatalysis performance in terms of high CO yield and long-term stability.

16.
Adv Mater ; 34(35): e2203442, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35797421

RESUMEN

The development of efficient and cost-effective electrocatalysts toward the oxygen evolution reaction (OER) is highly desirable for clean energy and fuel conversion. Herein, the facile preparation of Ni single atoms embedded hollow S/N-doped carbon macroporous fibers (Ni SAs@S/N-CMF) as efficient catalysts for OER through pyrolysis of designed CdS-NiSx /polyacrylonitrile composite fibers is reported. Specifically, CdS provides the sulfur source for the doping of polyacrylonitrile-derived carbon matrix and simultaneously creates the hollow macroporous structure, while NiSx is first reduced to nanoparticles and finally evolves into single Ni atoms through the atom migration-trapping strategy. Benefiting from the abundantly exposed single Ni atoms and hollow macroporous structure, the resultant Ni SAs@S/N-CMF electrocatalysts deliver outstanding activity and stability for OER. Specifically, it needs an overpotential of 285 mV to achieve the benchmark current density of 10 mA cm-2 with a small Tafel slope of 50.8 mV dec-1 .

17.
Adv Sci (Weinh) ; 9(10): e2106067, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35142449

RESUMEN

The development of MnO2 as a cathode for aqueous zinc-ion batteries (AZIBs) is severely limited by the low intrinsic electrical conductivity and unstable crystal structure. Herein, a multifunctional modification strategy is proposed to construct N-doped KMn8 O16 with abundant oxygen vacancy and large specific surface area (named as N-KMO) through a facile one-step hydrothermal approach. The synergetic effects of N-doping, oxygen vacancy, and porous structure in N-KMO can effectively suppress the dissolution of manganese ions, and promote ion diffusion and electron conduction. As a result, the N-KMO cathode exhibits dramatically improved stability and reaction kinetics, superior to the pristine MnO2 and MnO2 with only oxygen vacancy. Remarkably, the N-KMO cathode delivers a high reversible capacity of 262 mAh g-1 after 2500 cycles at 1 A g-1 with a capacity retention of 91%. Simultaneously, the highest specific capacity can reach 298 mAh g-1 at 0.1 A g-1 . Theoretical calculations reveal that the oxygen vacancy and N-doping can improve the electrical conductivity of MnO2 and thus account for the outstanding rate performance. Moreover, ex situ characterizations indicate that the energy storage mechanism of the N-KMO cathode is mainly a H+ and Zn2+ co-insertion/extraction process.

18.
ACS Appl Mater Interfaces ; 13(44): 52921-52930, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714623

RESUMEN

The modulation of electronic behavior of metal-based catalysts is vital to optimize their catalytic performance. Herein, metal-organic frameworks (MOFs) are pyrolyzed to afford a series of different-structured Cu-carbon composites and Cu@N-doped carbon composites. Then a series of CO-resistant catalysts, namely, Co or Ni nanoparticles supported by the Cu-based composites, are synthesized for the hydrogen generation from aqueous NH3BH3. Their catalytic activities are boosted under light irradiation and regulated by the compositions and the fine structures of doped N species with pyridine, pyrrole, and graphitic configurations in the composite supports. Particularly, the optimized Co-based catalyst with the highest graphitic N content exhibits a high activity, achieving a total turnover frequency (TOF) value of 210 min-1, which is higher than all the reported unprecious catalysts. Further investigations verify that the light-driven synergistic electron effect of plasmonic Cu-based composites and Co nanoparticles accounts for the high-performance hydrogen generation.

19.
ChemistryOpen ; 9(3): 366-373, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32211281

RESUMEN

From the perspective of tailoring the reaction pathways of photogenerated charge carriers and intermediates to remarkably enhance the solar-to-hydrogen energy conversion efficiency, we synthesized the three low-cost semiconducting nickel phosphides Ni2P, Ni12P5 and Ni3P, which singly catalyzed the hydrogen evolution from ammonia borane (NH3BH3) in the alkaline aqueous solution under visible light irradiation at 298 K. The systematic investigations showed that all the catalysts had higher activities under visible light irradiation than in the dark and Ni2P had the highest photocatalytic activity with the initial turnover frequency (TOF) value of 82.7 min-1, which exceeded the values of reported metal phosphides at 298 K. The enhanced activities of nickel phosphides were attributed to the visible-light-driven synergistic effect of photogenerated electrons (e-) and hydroxyl radicals (.OH), which came from the oxidation of hydroxide anions by photogenerated holes. This was verified by the fluorescent spectra and the capture experiments of photogenerated electrons and holes as well as hydroxyl radicals in the catalytic hydrogen evolution process.

20.
J Econ Entomol ; 113(3): 1419-1425, 2020 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-32173761

RESUMEN

The diamondback moth, Plutella xylostella (L.), is a worldwide insect pest of cruciferous crops. Although insecticides have long been used for its control, diamondback moth rapidly evolves resistance to almost any insecticide. In insects, juvenile hormone (JH) is critically involved in almost all biological processes. The correct activity of JH depends on the precise regulation of its titer, and juvenile hormone esterase (JHE) is the key regulator. Thus, JH and JHE have become important targets for new insecticide development. Trifluoromethyl ketones are specific JHE inhibitors, among which 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP) has the highest activity. The interaction effects between pretreatment with or combination of OTFP and the insecticides diafenthiuron, indoxacarb, and Bacillus thuringiensis (Bt) were investigated in diamondback moth larvae to determine OTFP's potential as an insecticide synergist. In third-instar larvae, both pretreatment and combination treatment with OTFP decreased or antagonized the toxicities of diafenthiuron, indoxacarb, and Bt at all set concentrations. In fourth-instar larvae, combination treatment with OTFP decreased or antagonized the toxicities of diafenthiuron and indoxacarb at all set concentrations. However, it increased or synergized the toxicity of Bt at lower concentrations despite the limited effect at higher concentrations. Our results indicated that the effect of OTFP on the toxicities of insecticides varied with the type and concentration, larval stage, and treatment method. These findings contribute to the better use of OTFP in diamondback moth control.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Acetona/análogos & derivados , Animales , Resistencia a los Insecticidas , Insecticidas/farmacología , Larva , Oxazinas , Feniltiourea/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA