Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 14(1): 14771, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951608

RESUMEN

Software defect prediction aims to find a reliable method for predicting defects in a particular software project and assisting software engineers in allocating limited resources to release high-quality software products. While most earlier research has concentrated on employing traditional features, current methodologies are increasingly directed toward extracting semantic features from source code. Traditional features often fall short in identifying semantic differences within programs, differences that are essential for the development of reliable and effective prediction models. In contrast, semantic features cannot present statistical metrics about the source code, such as the code size and complexity. Thus, using only one kind of feature negatively affects prediction performance. To bridge the gap between the traditional and semantic features, we propose a novel defect prediction model that integrates traditional and semantic features using a hybrid deep learning approach to address this limitation. Specifically, our model employs a hybrid CNN-MLP classifier: the convolutional neural network (CNN) processes semantic features extracted from projects' abstract syntax trees (ASTs) using Word2vec. In contrast, the traditional features extracted from the dataset repository are processed by a multilayer perceptron (MLP). Outputs of CNN and MLP are then integrated and fed into a fully connected layer for defect prediction. Extensive experiments are conducted on various open-source projects to validate CNN-MLP's effectiveness. Experimental results indicate that CNN-MLP can significantly enhance defect prediction performance. Furthermore, CNN-MLP's improvements outperform existing methods in non-effort-aware and effort-aware cases.

2.
Diagnostics (Basel) ; 14(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928696

RESUMEN

Alzheimer's disease (AD) is a neurological disorder that significantly impairs cognitive function, leading to memory loss and eventually death. AD progresses through three stages: early stage, mild cognitive impairment (MCI) (middle stage), and dementia. Early diagnosis of Alzheimer's disease is crucial and can improve survival rates among patients. Traditional methods for diagnosing AD through regular checkups and manual examinations are challenging. Advances in computer-aided diagnosis systems (CADs) have led to the development of various artificial intelligence and deep learning-based methods for rapid AD detection. This survey aims to explore the different modalities, feature extraction methods, datasets, machine learning techniques, and validation methods used in AD detection. We reviewed 116 relevant papers from repositories including Elsevier (45), IEEE (25), Springer (19), Wiley (6), PLOS One (5), MDPI (3), World Scientific (3), Frontiers (3), PeerJ (2), Hindawi (2), IO Press (1), and other multiple sources (2). The review is presented in tables for ease of reference, allowing readers to quickly grasp the key findings of each study. Additionally, this review addresses the challenges in the current literature and emphasizes the importance of interpretability and explainability in understanding deep learning model predictions. The primary goal is to assess existing techniques for AD identification and highlight obstacles to guide future research.

3.
Math Biosci Eng ; 21(4): 5712-5734, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38872555

RESUMEN

This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.


Asunto(s)
Algoritmos , Amputados , Electromiografía , Gestos , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Extremidad Superior , Humanos , Electromiografía/métodos , Extremidad Superior/fisiología , Masculino , Adulto , Femenino , Adulto Joven , Persona de Mediana Edad , Reproducibilidad de los Resultados
4.
J Xray Sci Technol ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38701131

RESUMEN

BACKGROUND: The emergence of deep learning (DL) techniques has revolutionized tumor detection and classification in medical imaging, with multimodal medical imaging (MMI) gaining recognition for its precision in diagnosis, treatment, and progression tracking. OBJECTIVE: This review comprehensively examines DL methods in transforming tumor detection and classification across MMI modalities, aiming to provide insights into advancements, limitations, and key challenges for further progress. METHODS: Systematic literature analysis identifies DL studies for tumor detection and classification, outlining methodologies including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and their variants. Integration of multimodality imaging enhances accuracy and robustness. RESULTS: Recent advancements in DL-based MMI evaluation methods are surveyed, focusing on tumor detection and classification tasks. Various DL approaches, including CNNs, YOLO, Siamese Networks, Fusion-Based Models, Attention-Based Models, and Generative Adversarial Networks, are discussed with emphasis on PET-MRI, PET-CT, and SPECT-CT. FUTURE DIRECTIONS: The review outlines emerging trends and future directions in DL-based tumor analysis, aiming to guide researchers and clinicians toward more effective diagnosis and prognosis. Continued innovation and collaboration are stressed in this rapidly evolving domain. CONCLUSION: Conclusions drawn from literature analysis underscore the efficacy of DL approaches in tumor detection and classification, highlighting their potential to address challenges in MMI analysis and their implications for clinical practice.

5.
PLoS One ; 18(11): e0293742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917752

RESUMEN

Refactoring, a widely adopted technique, has proven effective in facilitating and reducing maintenance activities and costs. Nonetheless, the effects of applying refactoring techniques on software quality exhibit inconsistencies and contradictions, leading to conflicting evidence on their overall benefit. Consequently, software developers face challenges in leveraging these techniques to improve software quality. Moreover, the absence of a categorization model hampers developers' ability to decide the most suitable refactoring techniques for improving software quality, considering specific design goals. Thus, this study aims to propose a novel refactoring categorization model that categorizes techniques based on their measurable impacts on internal quality attributes. Initially, the most common refactoring techniques used by software practitioners were identified. Subsequently, an experimental study was conducted using five case studies to measure the impacts of refactoring techniques on internal quality attributes. A subsequent multi-case analysis was conducted to analyze these effects across the case studies. The proposed model was developed based on the experimental study results and the subsequent multi-case analysis. The model categorizes refactoring techniques into green, yellow, and red categories. The proposed model, by acting as a guideline, assists developers in understanding the effects of each refactoring technique on quality attributes, allowing them to select appropriate techniques to improve specific quality attributes. Compared to existing studies, the proposed model emerges superior by offering a more granular categorization (green, yellow, and red categories), and its range is wide (including ten refactoring techniques and eleven internal quality attributes). Such granularity not only equips developers with an in-depth understanding of each technique's impact but also fosters informed decision-making. In addition, the proposed model outperforms current studies and offers a more nuanced understanding, explicitly highlighting areas of strength and concern for each refactoring technique. This enhancement aids developers in better grasping the implications of each refactoring technique on quality attributes. As a result, the model simplifies the decision-making process for developers, saving time and effort that would otherwise be spent weighing the benefits and drawbacks of various refactoring techniques. Furthermore, it has the potential to help reduce maintenance activities and associated costs.


Asunto(s)
Mejoramiento de la Calidad , Programas Informáticos
6.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37960445

RESUMEN

The extreme operating environment of the combined heat and power (CHP) engine is likely to cause anomalies and defects, which can lead to engine failure; thus, detecting engine anomalies is essential. In this study, we propose a parallel convolutional neural network-long short-term memory (CNN-LSTM) residual blocks attention (PCLRA) anomaly detection model with engine sensor data. To our knowledge, this is the first time that parallel CNN-LSTM-based networks have been used in the field of CHP engine anomaly detection. In PCLRA, spatiotemporal features are extracted via CNN-LSTM in parallel and the information loss is compensated using the residual blocks and attention mechanism. The performance of PCLRA is compared with various hybrid models for 15 cases. First, the performances of serial and parallel models are compared. In addition, we evaluated the contributions of the residual blocks and attention mechanism to the performance of the CNN-LSTM hybrid model. The results indicate that PCLRA achieves the best performance, with a macro f1 score (mean ± standard deviation) of 0.951 ± 0.033, an anomaly f1 score of 0.903 ± 0.064, and an accuracy of 0.999 ± 0.002. We expect that the energy efficiency and safety of CHP engines can be improved by applying the PCLRA anomaly detection model.

7.
Sensors (Basel) ; 23(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37299759

RESUMEN

In recent years, the development of deep learning technology has significantly benefited agriculture in domains such as smart and precision farming. Deep learning models require a large amount of high-quality training data. However, collecting and managing large amounts of guaranteed-quality data is a critical issue. To meet these requirements, this study proposes a scalable plant disease information collection and management system (PlantInfoCMS). The proposed PlantInfoCMS consists of data collection, annotation, data inspection, and dashboard modules to generate accurate and high-quality pest and disease image datasets for learning purposes. Additionally, the system provides various statistical functions allowing users to easily check the progress of each task, making management highly efficient. Currently, PlantInfoCMS handles data on 32 types of crops and 185 types of pests and diseases, and stores and manages 301,667 original and 195,124 labeled images. The PlantInfoCMS proposed in this study is expected to significantly contribute to the diagnosis of crop pests and diseases by providing high-quality AI images for learning about and facilitating the management of crop pests and diseases.


Asunto(s)
Agricultura , Enfermedades de las Plantas , Granjas , Productos Agrícolas
8.
Sci Rep ; 13(1): 7208, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137921

RESUMEN

Although previous studies conducted on the segmentation of hemorrhage images were based on the U-Net model, which comprises an encoder-decoder architecture, these models exhibit low parameter passing efficiency between the encoder and decoder, large model size, and slow speed. Therefore, to overcome these drawbacks, this study proposes TransHarDNet, an image segmentation model for the diagnosis of intracerebral hemorrhage in CT scan images of the brain. In this model, the HarDNet block is applied to the U-Net architecture, and the encoder and decoder are connected using a transformer block. As a result, the network complexity was reduced and the inference speed improved while maintaining the high performance compared to conventional models. Furthermore, the superiority of the proposed model was verified by using 82,636 CT scan images showing five different types of hemorrhages to train and test the model. Experimental results showed that the proposed model exhibited a Dice coefficient and IoU of 0.712 and 0.597, respectively, in a test set comprising 1200 images of hemorrhage, indicating better performance compared to typical segmentation models such as U-Net, U-Net++, SegNet, PSPNet, and HarDNet. Moreover, the inference time was 30.78 frames per second (FPS), which was faster than all en-coder-decoder-based models except HarDNet.


Asunto(s)
Encéfalo , Hemorragia Cerebral , Humanos , Hemorragia Cerebral/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Suministros de Energía Eléctrica , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador
9.
Front Plant Sci ; 12: 724487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975933

RESUMEN

Past studies of plant disease and pest recognition used classification methods that presented a singular recognition result to the user. Unfortunately, incorrect recognition results may be output, which may lead to further crop damage. To address this issue, there is a need for a system that suggest several candidate results and allow the user to make the final decision. In this study, we propose a method for diagnosing plant diseases and identifying pests using deep features based on transfer learning. To extract deep features, we employ pre-trained VGG and ResNet 50 architectures based on the ImageNet dataset, and output disease and pest images similar to a query image via a k-nearest-neighbor algorithm. In this study, we use a total of 23,868 images of 19 types of hot-pepper diseases and pests, for which, the proposed model achieves accuracies of 96.02 and 99.61%, respectively. We also measure the effects of fine-tuning and distance metrics. The results show that the use of fine-tuning-based deep features increases accuracy by approximately 0.7-7.38%, and the Bray-Curtis distance achieves an accuracy of approximately 0.65-1.51% higher than the Euclidean distance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA