Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biochem Biophys Res Commun ; 681: 271-275, 2023 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-37793312

RESUMEN

Hypoxia is a common hallmark of cancer and plays a crucial role in promoting epithelial-mesenchymal transition (EMT). Hormonally Upregulated Neu-associated Kinase (HUNK) regulates EMT through its kinase activity. However, whether hypoxia is involved in HUNK-mediated EMT is incompletely understood. This study unveils an association between HUNK kinase activity and hypoxia in colorectal cancer (CRC). Importantly, hypoxia does not alter the expression levels of HUNK, but directly affects the phosphorylation levels of downstream proteins with indication of HUNK activity. Functionally, the upregulation of migration, invasion, and expression of EMT markers in CRC cells under hypoxic conditions can be attributed, in part, to the downregulation of HUNK-mediated phosphorylation of downstream proteins. These findings highlight the intricate relationship between HUNK, hypoxia and the molecular mechanisms of cancer EMT. Understanding these mechanisms may provide valuable insights into therapeutic targets for inhibiting cancer metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transición Epitelial-Mesenquimal , Hipoxia , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Colorrectales/patología
2.
J Cancer Res Clin Oncol ; 149(17): 15679-15686, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37665406

RESUMEN

BACKGROUND: An increasing number of cohort studies have indicated a correlation between lung diseases and esophageal cancer, but the exact causal relationship has not been definitively established. Therefore, the objective of this study is to assess the causal relationship between lung diseases and esophageal cancer. METHODS: Single-nucleotide polymorphisms (SNPs) related to lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and idiopathic pulmonary fibrosis (IPF), along with outcomes data on esophageal cancer, were extracted from public genome-wide association studies (GWAS). A two-sample Mendelian randomization (MR) analysis was then performed using publicly available GWAS data to investigate the potential causal relationship. The effect estimates were primarily calculated using the fixed-effects inverse-variance-weighted method. RESULTS: Totally, 81 SNPs related to asthma among 218,792 participants in GWAS. Based on the primary causal effects model using MR analyses with the inverse variance weighted (IVW) method, asthma was demonstrated a significantly related to the risk of esophageal cancer (OR 1.0006; 95% CI 1.0003-1.0010, p = 0.001), while COPD (OR 1.0306; 95% CI 0.9504-1.1176, p = 0.466), lung cancer (OR 1.0003, 95% CI 0.9998-1.0008, p = 0.305), as well as IPF (OR 0.9999, 95% CI 0.9998-1.0000, p = 0.147), showed no significant correlation with esophageal cancer. CONCLUSIONS: The two-sample MR analysis conducted in this study revealed a positive causal relationship between asthma and esophageal cancer. In contrast, esophageal cancer demonstrated no significant correlation with COPD, lung cancer, or IPF. Further large-sample prospective studies are needed to validate these findings and to provide appropriate recommendations regarding esophageal cancer screening among patients with asthma.


Asunto(s)
Asma , Neoplasias Esofágicas , Fibrosis Pulmonar Idiopática , Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Asma/genética , Neoplasias Esofágicas/genética , Polimorfismo de Nucleótido Simple
3.
Cell Death Dis ; 14(5): 327, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193711

RESUMEN

Epithelial-mesenchymal transition (EMT) is associated with the invasive and metastatic phenotypes in colorectal cancer (CRC). However, the mechanisms underlying EMT in CRC are not completely understood. In this study, we find that HUNK inhibits EMT and metastasis of CRC cells via its substrate GEF-H1 in a kinase-dependent manner. Mechanistically, HUNK directly phosphorylates GEF-H1 at serine 645 (S645) site, which activates RhoA and consequently leads to a cascade of phosphorylation of LIMK-1/CFL-1, thereby stabilizing F-actin and inhibiting EMT. Clinically, the levels of both HUNK expression and phosphorylation S645 of GEH-H1 are not only downregulated in CRC tissues with metastasis compared with that without metastasis, but also positively correlated among these tissues. Our findings highlight the importance of HUNK kinase direct phosphorylation of GEF-H1 in regulation of EMT and metastasis of CRC.


Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Humanos , Fosforilación/fisiología , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética , Factores de Intercambio de Guanina Nucleótido/genética , Actinas/metabolismo , Neoplasias Colorrectales/genética , Línea Celular Tumoral , Metástasis de la Neoplasia , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(14): e2302291120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996116

RESUMEN

Overexpression of Ras, in addition to the oncogenic mutations, occurs in various human cancers. However, the mechanisms for epitranscriptic regulation of RAS in tumorigenesis remain unclear. Here, we report that the widespread N6-methyladenosine (m6A) modification of HRAS, but not KRAS and NRAS, is higher in cancer tissues compared with the adjacent tissues, which results in the increased expression of H-Ras protein, thus promoting cancer cell proliferation and metastasis. Mechanistically, three m6A modification sites of HRAS 3' UTR, which is regulated by FTO and bound by YTHDF1, but not YTHDF2 nor YTHDF3, promote its protein expression by the enhanced translational elongation. In addition, targeting HRAS m6A modification decreases cancer proliferation and metastasis. Clinically, up-regulated H-Ras expression correlates with down-regulated FTO and up-regulated YTHDF1 expression in various cancers. Collectively, our study reveals a linking between specific m6A modification sites of HRAS and tumor progression, which provides a new strategy to target oncogenic Ras signaling.


Asunto(s)
Neoplasias , Humanos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Carcinogénesis , Transformación Celular Neoplásica/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Transcripción Genética
5.
Cells ; 11(24)2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36552785

RESUMEN

B and T lymphocyte attenuator (BTLA) is an immune checkpoint molecule that mediates the escape of tumor cells from immunosurveillance. Consequently, BTLA and its ligand herpesvirus entry mediator (HVEM) are potentially immunotherapeutic targets. However, the potential effects of BTLA on tumor cells remain incompletely unknown. Here, we show that BTLA is expressed across a broad range of tumor cells. The depletion of BTLA or HVEM promotes cell proliferation and colony formation, which is reversed by the overexpression of BTLA in BTLA knockout cells. In contrast, overexpression of BTLA or HVEM inhibits tumor cell proliferation and colony formation. Furthermore, the proliferation of a subpopulation with high BTLA was also significantly slower than that of the low BTLA subpopulation. Mechanistically, the coordination of BTLA and HVEM inhibits its major downstream extracellular regulated protein kinase (ERK1/2) signaling pathway, thus preventing tumor cell growth. This study demonstrates that tumor cell-intrinsic BTLA/HVEM is a potential tumor suppressor and is likely to have a potential antagonist for immunotherapy, thus representing a potential biomarker for the optimal cancer immunotherapeutic treatment.


Asunto(s)
Neoplasias , Receptores Inmunológicos , Humanos , Proliferación Celular , Sistema de Señalización de MAP Quinasas , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Inmunológicos/metabolismo , Subgrupos de Linfocitos T/metabolismo
6.
Cell Death Dis ; 13(5): 456, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562342

RESUMEN

Clear cell renal cell carcinoma (ccRCC) patients are highly angiogenic and treated by targeted therapies against VEGFA/VEGFR signaling pathway. However, tumors with such targeted therapies remain a significant clinic challenge. Understanding the underlying mechanism against angiogenesis is highly desired. Here, we demonstrated that the lncRNA DMDRMR serves as a sponge of miR-378a-5p to increase EZH2 and SMURF1 expression, thus promoting EZH2-mediated transcriptional repression of DAB2IP and SMURF1-mediated degradation of DAB2IP. Consequently, this axis activates VEGFA/VEGFR2 signaling pathway, resulting in angiogenesis and resistance of tumor cells to sunitinib in ccRCC. Moreover, the competing endogenous RNA regulatory axis of DMDRMR is clinically relevant to ccRCC pathogenesis and prognosis of patients with ccRCC. Our results support that the DMDRMR/miR-378a-5p/DAB2IP axis may serve as a novel target for combination diagnosis or therapy of ccRCC patients. Our findings may have highly clinical relevance for future translation to develop the targeted therapies for patients with ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , ARN Largo no Codificante , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Patológica/genética , ARN Largo no Codificante/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
7.
Front Nutr ; 9: 831283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399659

RESUMEN

Esophageal cancer (EC) is one of the most common cancers worldwide. Malnutrition often leads to poor prognosis of patients with EC. Geriatric nutritional risk index (GNRI) was reported as an objective nutrition-related risk index. We intend to comprehensively review evidence of GNRI in predicting EC prognosis. To explore the influence of GNRI on the long-term survival outcome of patients with EC, a meta-analysis was needed. We searched the Web of Science, Medline, Embase, and the Cochrane Library databases. The association between prognosis of patients with EC and GNRI was evaluated by pooling hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs). The fixed model or random model method was chosen according to the heterogeneity among the studies. Totally, 11 studies with 1785 patients who met the inclusion criteria were eventually included in our meta-analysis. Comparing the lower level GNRI group and the higher level GNRI group, the pooled results showed that lower GNRI had a negative impact on overall survival (OS) (HR: 1.75, 95% CI: 1.45-2.10, P < 0.01) and cancer-specific survival (CSS) (HR: 1.77, 95% CI: 1.19-2.62, P < 0.01), indicating that lower GNRI significantly predicted poor OS. In conclusion, lower GNRI could predict the poor prognosis of patients with EC. Meanwhile, more well-designed randomized controlled trials (RCTs) are needed to confirm the findings.

8.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091468

RESUMEN

Lysosome plays important roles in cellular homeostasis, and its dysregulation contributes to tumor growth and survival. However, the understanding of regulation and the underlying mechanism of lysosome in cancer survival is incomplete. Here, we reveal a role for a histone acetylation-regulated long noncoding RNA termed lysosome cell death regulator (LCDR) in lung cancer cell survival, in which its knockdown promotes apoptosis. Mechanistically, LCDR binds to heterogenous nuclear ribonucleoprotein K (hnRNP K) to regulate the stability of the lysosomal-associated protein transmembrane 5 (LAPTM5) transcript that maintains the integrity of the lysosomal membrane. Knockdown of LCDR, hnRNP K, or LAPTM5 promotes lysosomal membrane permeabilization and lysosomal cell death, thus consequently resulting in apoptosis. LAPTM5 overexpression or cathepsin B inhibitor partially restores the effects of this axis on lysosomal cell death in vitro and in vivo. Similarly, targeting LCDR significantly decreased tumor growth of patient-derived xenografts of lung adenocarcinoma (LUAD) and had significant cell death using nanoparticles (NPs)-mediated systematic short interfering RNA delivery. Moreover, LCDR/hnRNP K/LAPTM5 are up-regulated in LUAD tissues, and coexpression of this axis shows the increased diagnostic value for LUAD. Collectively, we identified a long noncoding RNA that regulates lysosome function at the posttranscriptional level. These findings shed light on LCDR/hnRNP K/LAPTM5 as potential therapeutic targets, and targeting lysosome is a promising strategy in cancer treatment.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Proteínas de la Membrana/metabolismo , ARN Largo no Codificante/genética , Apoptosis/genética , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , China , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Neoplasias/genética
9.
Bioengineered ; 12(2): 9473-9483, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34699322

RESUMEN

N6-methyladenosine (m6A) has been involved in diverse biological processes in cancer, but its function and clinical value in clear cell renal cell carcinoma (ccRCC) remain largely unknown. In this study, we found that 1453 m6A-modified differentially expressed genes (DEGs) of ccRCC were mainly enriched in cell cycle, PI3K-AKT, and p53 signaling pathways. Then we constructed a co-expression network of the 1453 m6A-modified DEGs and identified a most clinically relevant module, where NUF2, CDCA3, CKAP2L, KIF14, and ASPM were hub genes. NUF2, CDCA3, and KIF14 could combine with a major RNA m6A methyltransferase METTL14, serving as biomarkers for ccRCC. Real-time quantitative PCR assay confirmed that NUF2, CDCA3, and KIF14 were highly expressed in ccRCC cell lines and ccRCC tissues. Furthermore, these three genes were modified by m6A and negatively regulated by METTL14. This study revealed that NUF2, CDCA3, and KIF14 were m6A-modified biomarkers, representing a potential diagnostic, prognostic, and therapeutic target for ccRCC.Abbreviations: m6A: N6-methyladenosine; ccRCC: clear cell renal cell carcinoma; DEGs: differentially expressed genes; NUF2: NUF2 component of NDC80 kinetochore complex; CDCA3: cell division cycle associated 3; CKAP2L: cytoskeleton associated protein 2 like; KIF14: kinesin family member 14; ASPM: assembly factor for spindle microtubules; METTL14: methyltransferase 14; OS: overall survival; FPKM: fragments per kilobase million; GEO: gene expression omnibus; TCGA: the Cancer Genome Atlas; RMA: robust multi-array average expression measure; WGCNA: weighted gene co-expression network analysis; GO: gene ontology; KEGG: kyoto encyclopedia of genes and genomes; ROC: receiver operating characteristic curve; AUC: area under the curve; RIP: RNA immunoprecipitation; qPCR: real-time quantitative PCR.


Asunto(s)
Adenosina/análogos & derivados , Biomarcadores de Tumor , Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Neoplasias Renales , Proteínas de Neoplasias , Adenosina/genética , Adenosina/metabolismo , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Perfilación de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética
10.
Cancer Res ; 81(4): 923-934, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33293428

RESUMEN

Aberrant N 6-methyladenosine (m6A) modification has emerged as a driver of tumor initiation and progression, yet how long noncoding RNAs (lncRNA) are involved in the regulation of m6A remains unknown. Here we utilize data from 12 cancer types from The Cancer Genome Atlas to comprehensively map lncRNAs that are potentially deregulated by DNA methylation. A novel DNA methylation-deregulated and RNA m6A reader-cooperating lncRNA (DMDRMR) facilitated tumor growth and metastasis in clear cell renal cell carcinoma (ccRCC). Mechanistically, DMDRMR bound insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) to stabilize target genes, including the cell-cycle kinase CDK4 and three extracellular matrix components (COL6A1, LAMA5, and FN1), by specifically enhancing IGF2BP3 activity on them in an m6A-dependent manner. Consequently, DMDRMR and IGF2BP3 enhanced the G1-S transition, thus promoting cell proliferation in ccRCC. In patients with ccRCC, high coexpression of DMDRMR and IGF2BP3 was associated with poor outcomes. Our findings reveal that DMDRMR cooperates with IGF2BP3 to regulate target genes in an m6A-dependent manner and may represent a potential diagnostic, prognostic, and therapeutic target in ccRCC. SIGNIFICANCE: This study demonstrates that the lncRNA DMDRMR acts as a cofactor for IGF2BP3 to stabilize target genes in an m6A-dependent manner, thus exerting essential oncogenic roles in ccRCC.


Asunto(s)
Adenosina/análogos & derivados , Carcinoma de Células Renales/patología , Quinasa 4 Dependiente de la Ciclina/genética , Neoplasias Renales/patología , ARN Largo no Codificante/fisiología , Proteínas de Unión al ARN/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Metilación de ADN/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos
11.
Proc Natl Acad Sci U S A ; 117(12): 6640-6650, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32161124

RESUMEN

The programmed cell death 1 (PD-1) receptor on the surface of immune cells is an immune checkpoint molecule that mediates the immune escape of tumor cells. Consequently, antibodies targeting PD-1 have shown efficacy in enhancing the antitumor activity of T cells in some types of cancers. However, the potential effects of PD-1 on tumor cells remain largely unknown. Here, we show that PD-1 is expressed across a broad range of tumor cells. The silencing of PD-1 or its ligand, PD-1 ligand 1 (PD-L1), promotes cell proliferation and colony formation in vitro and tumor growth in vivo. Conversely, overexpression of PD-1 or PD-L1 inhibits tumor cell proliferation and colony formation. Moreover, blocking antibodies targeting PD-1 or PD-L1 promote tumor growth in cell cultures and xenografts. Mechanistically, the coordination of PD-1 and PD-L1 activates its major downstream signaling pathways including the AKT and ERK1/2 pathways, thus enhancing tumor cell growth. This study demonstrates that PD-1/PD-L1 is a potential tumor suppressor and potentially regulates the response to anti-PD-1/PD-L1 treatments, thus representing a potential biomarker for the optimal cancer immunotherapeutic treatment.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Resistencia a Antineoplásicos , Neoplasias Pulmonares/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Transducción de Señal , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Natl Sci Rev ; 7(3): 671-685, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34692086

RESUMEN

Central precocious puberty (CPP) refers to a human syndrome of early puberty initiation with characteristic increase in hypothalamic production and release of gonadotropin-releasing hormone (GnRH). Previously, loss-of-function mutations in human MKRN3, encoding a putative E3 ubiquitin ligase, were found to contribute to about 30% of cases of familial CPP. MKRN3 was thereby suggested to serve as a 'brake' of mammalian puberty onset, but the underlying mechanisms remain as yet unknown. Here, we report that genetic ablation of Mkrn3 did accelerate mouse puberty onset with increased production of hypothalamic GnRH1. MKRN3 interacts with and ubiquitinates MBD3, which epigenetically silences GNRH1 through disrupting the MBD3 binding to the GNRH1 promoter and recruitment of DNA demethylase TET2. Our findings have thus delineated a molecular mechanism through which the MKRN3-MBD3 axis controls the epigenetic switch in the onset of mammalian puberty.

13.
Cancer Res ; 79(12): 3063-3075, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987997

RESUMEN

Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transition (EMT) through extracellular-regulated protein kinases 1/2 pathway activation, which is mediated by EGFR and adipocyte plasma membrane-associated protein (APMAP) accumulation in cholesterol-induced lipid rafts. Mechanistically, APMAP increases the interaction with EGFR substrate 15-related protein (EPS15R) to inhibit the endocytosis of EGFR by cholesterol, thus promoting cholesterol-induced EMT. Both the mRNA and protein levels of APMAP are upregulated in clinical prostate cancer samples. Together, these findings shed light onto an APMAP/EPS15R/EGFR axis that mediates cholesterol-induced EMT of prostate cancer cells. SIGNIFICANCE: This study delineates the molecular mechanisms by which cholesterol increases prostate cancer progression and demonstrates that the binding of cholesterol-induced APMAP with EPS15R inhibits EGFR internalization and activates ERK1/2 to promote EMT. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3063/F1.large.jpg.


Asunto(s)
Colesterol/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Proteolisis/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Estudios de Casos y Controles , Proliferación Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Pronóstico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Oncol Rep ; 40(5): 2814-2825, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30132573

RESUMEN

Long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and cancer progression. The c-Myc upregulated lncRNA MYU (VPS9D1 antisense RNA1, annotated as VPS9D1-AS1) has been reported in several common types of human cancers, which has revealed that lncRNA MYU could function as either an oncogene or a tumor-suppressor gene in different cancer types. However, the function of lncRNA MYU in prostate cancer remains unknown. In the present study, we demonstrated that lncRNA MYU is significantly upregulated in prostate cancer tissues. MYU knockdown impaired prostate cancer cell growth and migration as shown from cell viability, colony formation, Transwell and wound healing assays. In contrast, MYU overexpression displayed opposite effects. No correlation was noted between MYU and its cognate VPS9D1 expression level. Moreover, lncRNA MYU did not regulate the expression of VPS9D1 either at the mRNA or protein level as detected using qRT-PCR and western blotting assays. Furthermore, lncRNA MYU was able to be transported into the extracellular milieu by means of exosomes, and then promoted adjacent cell proliferation and migration. Mechanistically, lncRNA MYU upregulated c-Myc by competitively binding miR-184 and then induced the proliferation of prostate cancer. Thus, this study demonstrated that lncRNA MYU functions as an oncogene in prostate cancer at least in part through the miR-184/c-Myc axis, and may serve as a potential diagnostic biomarker and therapeutic target.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Oncogenes , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba
15.
J Cancer ; 9(14): 2532-2542, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30026852

RESUMEN

Cancer incidence and mortality increase with increasing body mass index (BMI), but BMI-associated epigenetic alterations in cancer remain elusive. We hypothesized that BMI would be associated with DNA methylation alterations in cancers. To test this hypothesis, here, we estimated the associations between DNA methylation and BMI through two different methods across 15 cancer types, at approximately 485,000 CpG sites and 2415 samples using data from The Cancer Genome Atlas. After comparing the DNA methylation levels in control BMI and high BMI individuals, we found differentially methylated CpG sites (DMSs) in cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), and uterine corpus endometrial carcinoma (UCEC) (False Discovery Rate < 0.05). The DMSs of COAD or UCEC were enriched in several obesity-induced and cancer-related pathways. Next, when BMI was used as a continuous variable, we identified BMI-associated methylated CpG sites (BMS) (P (Bonferroni) < 0.05) in CHOL (BMS = 1), COAD (BMS = 1), and UCEC (BMS = 4) using multivariable linear regression. In UCEC, three of the BMSs can predict the clinical outcomes and survival of patients with the tumors. Overall, we observed associations between DNA methylation and high BMI in CHOL, COAD, and UCEC. Furthermore, three BMI-associated CpGs were identified as potential biomarkers for UCEC prognosis.

16.
Biochem Biophys Res Commun ; 502(2): 262-268, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29803673

RESUMEN

Prostate cancer (PCa) is the most common malignancy and the leading cause of cancer deaths in males. Recent studies demonstrate that long non-coding RNAs (lncRNAs) are involved in many aspects of PCa. However, their biological roles in PCa remain imperfectly understood. Here,wecharacterized anlncRNA, PCaspecific expression and EZH2-associatedtranscript (PCSEAT, annotated as PRCAT38), which is specifically overexpressedin PCa. We further demonstrated that knockdown of PCSEAT results in the reduction of PCa cell growth and motility, and overexpression of PCSEAT reverses these phenotypes. Furthermore, bioactive PCSEAT is incorporated into exosomes and transmitted to adjacent cells, thus promoting cell proliferation and motility. Mechanistically, we found that PCSEAT promotes cell proliferation, at least in part by affecting miR-143-3p- and miR-24-2-5p-mediated regulation of EZH2, suggesting that PCSEAT and EZH2 competitively 'sponge' miR-143-3p and miR-24-2-5p.Overall, ourresultsrevealthat PCSEAT is specifically overexpressed in PCa patients and a potential oncogene in PCa cells via mediating EZH2 activity, indicating that PCSEAT may be a potential therapeutic target in PCa.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Unión Competitiva , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Oncogenes , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Regulación hacia Arriba
17.
Sci Rep ; 7(1): 14200, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079774

RESUMEN

Clear-cell renal cell carcinoma (ccRCC) is a common aggressive urinary malignant tumor that cannot be easily diagnosed at an early stage. The DNA methylation occurs within promoter before precancerous lesion plays a pivotal role that could help us in diagnosing and understanding ccRCC. In this study, based on a whole-genome promoter DNA methylation profiling, we used shrunken centroids classifier method to identify a CpG-based biomarker that is capable of differentiating between ccRCC tumor and adjacent tissues. The biomarker was validated in 19 ccRCCs and three public datasets. We found that both CYP4B1 and RAB25 are downregulated with promoter hypermethylation and CA9 is upregulated with promoter hypomethylation, and we validated their mRNA differential expressions in 19 ccRCCs and 10 GEO datasets. We further confirmed that hypermethylated RAB25 is inversely correlated with its mRNA level. Log-rank test showed that ccRCC patients with low levels of CA9 promoter methylation had a higher survival rate. This reveals clinically a potential biomarker for use in early detection for ccRCC, and provides a better understanding of carcinogenesis.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Islas de CpG/genética , Metilación de ADN , Neoplasias Renales/genética , Regiones Promotoras Genéticas/genética , Proteínas de Unión al GTP rab/genética , Antígenos de Neoplasias/genética , Hidrocarburo de Aril Hidroxilasas/genética , Anhidrasa Carbónica IX/genética , Carcinoma de Células Renales/diagnóstico , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/diagnóstico , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia
18.
Oncotarget ; 8(35): 58199-58209, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28938548

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the most common tumor in elderly men. However, the specificity and sensitivity of serum prostate-specific antigen levels in PCa diagnosis are controversial. This study aims to reveal a novel diagnosis biomarker in PCa. MATERIALS AND METHODS: The differential methylated CpG sites between 423 primary PCa and 39 adjacent samples from The Cancer Genome Atlas (TCGA) on Illumina HumanMethylation 450 platform were analyzed. The diagnostic methylation markers were mined using the Prediction Analysis of Microarrays package in Bioconductor. Then, the Gene Expression Omnibus data was used for verification. Pyrosequencing was applied to improve methylation levels of five CpGs (cg06363129, cg08843517, cg05385513, cg07220448 and cg11417025). RESULTS: The area under curve of receiver operating characteristic of eight diagnostic methylation CpGs (cg06363129, cg08843517, cg03576469, cg05385513, cg07220448, cg11417025, cg20883831, and cg23824801) in TCGA data ranged from 0.910 to 0.939. Except for cg20883831 and cg23824801, the correlations between methylation levels of six other sites and their expressions in patients were significant (r > 0.5 and P < 0.001). The methylation level of cg06363129 was significantly different between the groups of Gleason Score (GS) = 7 and GS ≥ 8 (P < 0.05). Pyrosequencing in our samples confirmed that four diagnostic methylation sites (cg06363129, cg08843517, cg05385513, and cg11417025) had high diagnostic efficacy. CONCLUSIONS: The combined diagnosis of four methylation CpGs sites (cg06363129, cg08843517, cg05385513, and cg11417025) in the gene promoter has high tissue specificity and diagnostic efficacy for PCa. Results revealed a novel potential biomarker for prostate cancer diagnosis.

19.
Oncotarget ; 8(20): 33745-33755, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28422721

RESUMEN

BACKGROUND: As one of the most common cancers in men, the pathogenesis of prostate cancer has been widely researched. Aberrant activation of the erb-b2 receptor tyrosine kinase 2 (ERBB2) has been found to play a critical role in metastatic prostate cancer. In our previous study, we demonstrated that rs61552325 (Pro1140Ala) located in ERBB2 is strongly correlated to prostate cancer. Therefore, we initially studied the effect of rs61552325 on androgen-independent prostate cancer cell metastasis. RESULTS: Bioinformatic results demonstrated that the mutant Pro1140Ala likely decrease the stability of the ERBB2 protein and its interactions. The mean migration rate after 6 h for PC3 minor variant cells which carried the G allele was 1.28-fold higher than major variant PC3 cells that carried the C allele (P = 0.016). The mean invasion rate of DU145 putative minor variant cells was 0.40 reducer than negative control cells (P = 5.9E-04). METHODS: rs61552325 major variant (C allele) and minor variant (G allele) were produced by site directed mutagenesis and transfected into DU145 and PC3 cells. A wound healing assay was performed to compare migration abilities between alleles. After knocking down endogenous ERBB2 and then expressing the rs61552325 minor variant, invasion abilities were evaluated with a transwell assay using DU145 and PC3 cells. CONCLUSIONS: Our data showed that the rs61552325 major variant decreases PC3 cell migration and its minor variant depresses DU145 cell invasion, suggesting that rs61552325 is likely an important change during prostate cancer invasion.


Asunto(s)
Alelos , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptor ErbB-2/genética , Línea Celular Tumoral , Movimiento Celular/genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Estabilidad Proteica , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo
20.
Zhonghua Nan Ke Xue ; 22(4): 294-9, 2016 04.
Artículo en Chino | MEDLINE | ID: mdl-30088395

RESUMEN

Objective: The NKX3.1 homeobox gene is closely associated with the development and progression of prostate cancer. This study was to explore NKX3.1-related down-stream node genes and their possible regulating mechanisms in prostate cancer. Methods: By multi-omics analysis of the TCGA data on prostate cancer,we screened 5 node genes in the down-stream signaling pathways that were possibly related to NKX3.1.We achieved the overexpression of NKX3.1 in prostate cancer by transfecting the prostate cancer PC-3 cell lines with the NKX3.1 expression vector and determined the expression levels of the node genes by real-time PCR. Results: Based on the results of multi-omics analysis,MAZ,LPAR3,TUBB2A,CAMKK2 and CPT1B were identified as the node genes involved in the NKX3.1-related signaling pathways in prostate cancer. The NKX3.1 overexpression experiments showed that the CAMKK2 and CPT1B genes were up-regulated 3. 439 and 4. 641 times respectively and the MAZ gene down-regulated 5.236 times in the prostate cancer PC-3 cells with the overexpression of NKX3.1. Conclusion: NKX3.1 may suppress the development and progression of prostate cancer by down-regulating the expression of MAZ and up-regulating those of CAMKK2 and CPT1B,and it may also be involved in the regulation of the metabolic process of prostate cancer through the CAMKK2 down-stream signaling pathway and CPT1B.


Asunto(s)
Proteínas de Homeodominio/genética , Neoplasias de la Próstata/genética , Transducción de Señal , Factores de Transcripción/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Carnitina O-Palmitoiltransferasa/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Activación Transcripcional , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA