Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Nutr ; 154(2): 516-525, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38160805

RESUMEN

BACKGROUND: The measurement of ileal amino acid (AA) digestibility is invasive and inappropriate when applied to vulnerable populations. The dual isotope method has been developed over the past 5 y as an alternative method. OBJECTIVE: The aim of this work was to compare the indispensable amino acid (IAA) digestibility values of 2 different proteins obtained using the dual isotope and the standard ileal balance methods in the same subjects. METHODS: Fifteen healthy adults completed the study. Over 4 h, they ingested 9 successive portions of mashed potatoes containing the test protein (pea protein or casein) labeled intrinsically with 15N and 2H, and a 13C-free AA mixture as a reference for the dual isotope method. Plasma was sampled regularly over the 8-h postprandial period, whereas the ileal digesta was collected continuously via a naso-ileal tube. Isotopic enrichments (15N and 13C) were measured in the digesta for the direct determination of ileal IAA digestibility, whereas plasma enrichments (2H and 13C) were measured to determine IAA digestibility using the dual isotope method. RESULTS: The 4-h repeated meal procedure enabled the almost complete digestion of test proteins at 8 h and the attainment of a plasma isotopic plateau between 2.5 and 4 h. These conditions were necessary to perform the ileal balance and dual isotope methods simultaneously. For pea protein, the mean IAA digestibility was similar between the 2 methods, but significant differences (from 10% to 20%) were observed for individual IAA values. For casein, IAA digestibility was significantly lower with the dual isotope method for all the IAA analyzed. CONCLUSIONS: Under our experimental conditions, the degree of agreement between the dual isotope and ileal balance methods varied among AAs and depended on the protein source. Further research is needed to validate the dual isotope method. This study was registered at clinicaltrials.gov as NCT04072770.


Asunto(s)
Aminoácidos , Proteínas de Guisantes , Adulto , Humanos , Aminoácidos/metabolismo , Alimentación Animal , Caseínas/metabolismo , Dieta , Proteínas en la Dieta/metabolismo , Digestión , Voluntarios Sanos , Íleon/metabolismo , Isótopos/metabolismo , Proteínas de Guisantes/metabolismo
2.
Food Res Int ; 167: 112723, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087279

RESUMEN

While the prevalence of obesity progresses worldwide, the consumption of sugars and dietary fiber increases and decreases, respectively. In this context, NUTRIOSE® soluble fiber is a plant-based food ingredient with beneficial effects in Humans. Here, we studied in mice the mechanisms involved, particularly the involvement of intestinal gluconeogenesis (IGN), the essential function in the beneficial effects of dietary fibers. To determine whether NUTRIOSE® exerts its beneficial effects via the activation of IGN, we studied the effects of dietary NUTRIOSE® on the development of obesity, diabetes and non-alcoholic fatty liver disease (NAFLD), which IGN is able to prevent. To assert the role of IGN in the observed effects, we studied wild-type (WT) and IGN-deficient mice. In line with our hypothesis, NUTRIOSE® exerts metabolic benefits in WT mice, but not in IGN-deficient mice. Indeed, WT mice are protected from body weight gain and NAFLD induced by a high calorie diet. In addition, our data suggests that NUTRIOSE® may improve energy balance by activating a browning process in subcutaneous white adipose tissue. While the gut microbiota composition changes with NUTRIOSE®, this is not sufficient in itself to account for the benefits observed. On the contrary, IGN is obligatory in the NUTRIOSE® benefits, since no benefit take place in absence of IGN. In conclusion, IGN plays a crucial and essential role in the set-up of the beneficial effects of NUTRIOSE®, highlighting the interest of the supplementation of food with healthy ingredients in the context of the current obesity epidemic.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Prebióticos , Humanos , Ratones , Animales , Gluconeogénesis , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Dieta , Metabolismo Energético , Fibras de la Dieta/metabolismo , Obesidad/prevención & control , Obesidad/metabolismo
3.
J Nutr ; 153(3): 645-656, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36931747

RESUMEN

BACKGROUND: Plant proteins (PPs) have been associated with better cardiovascular health than animal proteins (APs) in epidemiological studies. However, the underlying metabolic mechanisms remain mostly unknown. OBJECTIVES: Using a combination of cutting-edge isotopic methods, we aimed to better characterize the differences in protein and energy metabolisms induced by dietary protein sources (PP compared with AP) in a prudent or western dietary context. METHODS: Male Wistar rats (n = 44, 8 wk old) were fed for 4.5 mo with isoproteic diets differing in their protein isolate sources, either AP (100% milk) or PP (50%:50% pea: wheat) and being normal (NFS) or high (HFS) in sucrose (6% or 15% kcal) and saturated fat (7% or 20% kcal), respectively. We measured body weight and composition, hepatic enzyme activities and lipid content, and plasma metabolites. In the intestine, liver, adipose tissues, and skeletal muscles, we concomitantly assessed the extent of amino acid (AA) trafficking using a 15N natural abundance method, the rates of macronutrient routing to dispensable AA using a 13C natural abundance method, and the metabolic fluxes of protein synthesis (PS) and de novo lipogenesis using a 2H labeling method. Data were analyzed using ANOVA and Mixed models. RESULTS: At the whole-body level, PP limited HFS-induced insulin resistance (-27% in HOMA-IR between HFS groups, P < 0.05). In the liver, PP induced lower lipid content (-17%, P < 0.01) and de novo lipogenesis (-24%, P < 0.05). In the different tissues studied, PP induced higher AA transamination accompanied by higher routings of dietary carbohydrates and lipids toward dispensable AA synthesis by glycolysis and ß-oxidation, resulting in similar tissue PS and protein mass. CONCLUSIONS: In growing rats, compared with AP, a balanced blend of PP similarly supports protein anabolism while better limiting whole-body and tissue metabolic dysregulations through mechanisms related to their less optimal AA profile for direct channeling to PS.


Asunto(s)
Proteínas de Guisantes , Ratas , Animales , Proteínas de Guisantes/metabolismo , Proteínas de la Leche/farmacología , Proteínas de la Leche/metabolismo , Triticum , Sacarosa , Dieta Alta en Grasa , Ratas Wistar , Hígado/metabolismo , Aminoácidos/metabolismo , Proteínas en la Dieta/metabolismo , Lípidos
4.
J Nutr Sci ; 12: e18, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843980

RESUMEN

The rat model can be used to assess ileal protein digestibility rapidly and in first intention, but no standardised method exists. Our objective was to compare methods to assess protein digestibility, depending on collection site (ileum/caecum) and use of a non-absorbable marker. A meal containing either casein, gluten or pea protein and chromium oxide as non-absorbable marker was given to male Wistar rats and the entire digestive content was collected 6 h later. Total chromium recovery was incomplete and variable, depending on protein source. We observed no significant difference in digestibility between the methods for any of the protein sources tested. Although none of the methods tested is optimal, our results suggest that caecal digestibility can be used as a proxy of ileal digestibility in rats without using a non-absorbable marker. This simple method makes it possible to evaluate protein digestibility of new alternative protein sources for human consumption.


Asunto(s)
Aminoácidos , Íleon , Humanos , Ratas , Masculino , Animales , Aminoácidos/metabolismo , Ratas Wistar , Íleon/metabolismo , Digestión , Ciego/metabolismo
5.
Nutrients ; 14(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364873

RESUMEN

Previous studies have shown that a resistant dextrin soluble fibre has prebiotic properties with related health benefits on blood glucose management and satiety. Our aim was to demonstrate the effects of continuous administration of resistant dextrin on intestinal gas production, digestive sensations, and gut microbiota metabolism and composition. Healthy subjects (n = 20) were given resistant dextrin (14 g/d NUTRIOSE®, Roquette Frères, Lestrem, France) for four weeks. Outcomes were measured before, at the beginning, end, and two weeks after administration: anal evacuations of gas during daytime; digestive perception, girth, and gas production in response to a standard meal; sensory and digestive responses to a comfort meal; volume of colonic biomass by magnetic resonance; taxonomy and metabolic functions of fecal microbiota by shotgun sequencing; metabolomics in urine. Dextrin administration produced an initial increase in intestinal gas production and gas-related sensations, followed by a subsequent decrease, which magnified after discontinuation. Dextrin enlarged the volume of colonic biomass, inducing changes in microbial metabolism and composition with an increase in short chain fatty acids-producing species and modulation of bile acids and biotin metabolism. These data indicate that consumption of a soluble fibre induces an adaptative response of gut microbiota towards fermentative pathways with lower gas production.


Asunto(s)
Dextrinas , Microbiota , Humanos , Dextrinas/farmacología , Intestinos , Prebióticos , Heces , Homeostasis
6.
Mol Nutr Food Res ; 66(11): e2101091, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35312171

RESUMEN

SCOPE: An imbalance of the gut microbiota ("dysbiosis") is associated with numerous chronic diseases, and its modulation is a promising novel therapeutic approach. Dietary supplementation with soluble fiber is one of several proposed modulation strategies. This study aims at confirming the impact of the resistant dextrin NUTRIOSE (RD), a soluble fiber with demonstrated beneficial health effects, on the gut microbiota of healthy individuals. METHODS AND RESULTS: Fifty healthy women are enrolled and supplemented daily with either RD (n = 24) or a control product (n = 26) during 6 weeks. Characterization of the fecal metagenome with shotgun sequencing reveals that RD intake dramatically increases the abundance of the commensal bacterium Parabacteroides distasonis. Furthermore, presence in metagenomes of accessory genes from P. distasonis, coding for susCD (a starch-binding membrane protein complex) is associated with a greater increase of the species. This suggests that response to RD might be strain-dependent. CONCLUSION: Supplementation with RD can be used to specifically increase P. distasonis in gut microbiota of healthy women. The magnitude of the response may be associated with fiber-metabolizing capabilities of strains carried by subjects. Further research will seek to confirm that P. distasonis directly modulates the clinical effects observed in other studies.


Asunto(s)
Dextrinas , Suplementos Dietéticos , Bacteroidetes , Dextrinas/farmacología , Dieta , Heces/microbiología , Femenino , Humanos
7.
Am J Clin Nutr ; 115(2): 353-363, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34665230

RESUMEN

BACKGROUND: It is necessary to propose plant alternatives to animal proteins that are of good nutritional quality. Pea is a good candidate owing to its high protein content and its well-balanced amino acid (AA) profile. OBJECTIVES: This study aimed to assess the real ileal AA and nitrogen digestibility (RIDAA and RIDN) of pea protein isolate as compared to milk casein in humans. It also aimed to evaluate their nutritional quality through calculation of the digestible indispensable amino acid score (DIAAS) and to determine the net postprandial protein utilization (NPPU). METHODS: Fifteen healthy volunteers were included in a randomized, single-blinded, 2-arm, parallel-design trial. They were equipped with a naso-ileal tube. They ingested the test meals, which consisted of 9 successive portions of mashed potatoes containing either pea protein or casein, intrinsically labeled with nitrogen 15. Ileal content, plasma, and urine samples were collected regularly over an 8-h postprandial period. RESULTS: The mean RIDAA values were 93.6% ± 2.9% for pea protein and 96.8% ± 1.0% for casein, with no difference between the sources (P = 0.22). Leucine, valine, lysine, and phenylalanine were significantly less digestible in pea than in casein. The RIDN values were 92.0% ± 2.7% and 94.0% ± 1.7% for pea protein and casein, respectively, and were not different (P = 0.11). The DIAAS was 1.00 for pea protein and 1.45 for casein. The NPPU was 71.6% ± 6.2% and 71.2% ± 4.9% for pea protein and casein, respectively (P = 0.88). CONCLUSIONS: Although some AAs are less digestible in pea protein than in casein, the real ileal digestibility and the NPPU were not different. The DIAAS of 1.00 obtained for pea protein demonstrated its ability to meet all AA requirements. This study shows the potential of pea isolate as a high-quality protein. This study was registered at clinicaltrials.gov as NCT04072770.


Asunto(s)
Aminoácidos/farmacocinética , Caseínas/farmacocinética , Digestión/fisiología , Íleon/metabolismo , Proteínas de Guisantes/farmacocinética , Adolescente , Adulto , Anciano , Femenino , Voluntarios Sanos , Humanos , Absorción Intestinal , Masculino , Persona de Mediana Edad , Método Simple Ciego , Adulto Joven
9.
Eur J Nutr ; 60(8): 4635-4643, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34170392

RESUMEN

PURPOSE: Resistant dextrin (RD) supplementation has been shown to alter satiety, glycaemia, and body weight, in overweight Chinese men; however, there are limited data on its effects in other demographic groups. Here, we investigated the effects of RD on satiety in healthy adults living in the United Kingdom. METHODS: 20 normal weight and 16 overweight adults completed this randomised controlled cross-over study. Either RD (14 g/day NUTRIOSE® FB06) or maltodextrin control was consumed in mid-morning and mid-afternoon preload beverages over a 28-day treatment period with crossover after a 28-day washout. During 10-h study visits (on days 1, 14, and 28 of each treatment period), satietogenic, glycaemic and anorectic hormonal responses to provided meals were assessed. RESULTS: Chronic supplementation with RD was associated with higher fasted satiety scores at day 14 (P = 0.006) and day 28 (P = 0.040), compared to control. RD also increased satiety after the mid-morning intervention drink, but it was associated with a reduction in post-meal satiety following both the lunch and evening meals (P < 0.01). The glycaemic response to the mid-morning intervention drink (0-30 min) was attenuated following RD supplementation (P < 0.01). Whilst not a primary endpoint we also observed lower systolic blood pressure at day 14 (P = 0.035) and 28 (P = 0.030), compared to day 1, following RD supplementation in the normal weight group. Energy intake and anthropometrics were unaffected. CONCLUSIONS: RD supplementation modified satiety and glycaemic responses in this cohort, further studies are required to determine longer-term effects on body weight control and metabolic markers. CLINICALTRIALS. GOV REGISTRATION: NCT02041975 (22/01/2014).


Asunto(s)
Dextrinas , Respuesta de Saciedad , Adulto , Glucemia , Estudios Cruzados , Suplementos Dietéticos , Ingestión de Energía , Humanos , Masculino , Saciedad
10.
Eur J Nutr ; 60(6): 3085-3093, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33515092

RESUMEN

PURPOSE: Plant-based proteins may have the potential to improve glycaemic and gastrointestinal hormone responses to foods and beverages. The aim of this study was to investigate the effect of two doses of pea protein on postprandial glycaemic, insulinaemic, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) response following a high-carbohydrate beverage intake in healthy individuals. METHODS: In a single-blind, randomised, controlled, repeat measure, crossover design trial, thirty-one participants were randomly assigned to ingest 50 g glucose (Control), 50 g glucose with 25 g pea protein (Test 1) and 50 g glucose with 50 g pea protein (Test 2) on three separate days. Capillary blood samples (blood glucose and plasma insulin measurements) and venous blood samples (GIP and GLP-1 concentrations) were taken before each test and at fixed intervals for 180 min. The data were compared using repeated-measures ANOVA or the Friedman test. RESULTS: Glucose incremental Area under the Curve (iAUC180) was significantly lower (p < 0.001) after Test 2 compared with Control (- 53%), after Test 1 compared with Control (- 31%) and after Test 2 compared with Test 1 (-32%). Insulin iAUC 180 was significantly higher (p < 0.001) for Test 1 (+ 28%) and Test 2 (+ 40%) compared with Control and for Test 2 (+ 17%) compared with Test 1 (p = 0.003). GIP and GLP-1 release showed no clear difference between Control and Pea protein drinks. CONCLUSION: The consumption of pea protein reduced postprandial glycaemia and stimulated insulin release in healthy adults with a dose-response effect, supporting its role in regulating glycaemic and insulinaemic responses.


Asunto(s)
Proteínas de Guisantes , Adulto , Bebidas , Glucemia , Estudios Cruzados , Ingestión de Alimentos , Polipéptido Inhibidor Gástrico , Péptido 1 Similar al Glucagón , Glucosa , Humanos , Insulina , Periodo Posprandial , Método Simple Ciego
11.
Br J Nutr ; 125(4): 389-397, 2021 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32713356

RESUMEN

The objective of this study was to assess the nutritional quality of pea protein isolate in rats and to evaluate the impact of methionine (Met) supplementation. Several protein diets were studied: pea protein, casein, gluten, pea protein-gluten combination and pea protein supplemented with Met. Study 1: Young male Wistar rats (n 8/group) were fed the test diets ad libitum for 28 d. The protein efficiency ratio (PER) was measured. Study 2: Adult male Wistar rats (n 9/group) were fed the test diets for 10 d. A protein-free diet group was used to determine endogenous losses of N. The rats were placed in metabolism cages for 3 d to assess N balance, true faecal N digestibility and to calculate the Protein Digestible-Corrected Amino Acid Score (PDCAAS). They were then given a calibrated meal and euthanised 6 h later for collection of digestive contents. The true caecal amino acid (AA) digestibility was determined, and the Digestible Indispensable Amino Acid Score (DIAAS) was calculated. Met supplementation increased the PER of pea protein (2·52 v. 1·14, P < 0·001) up to the PER of casein (2·55). Mean true caecal AA digestibility was 94 % for pea protein. The DIAAS was 0·88 for pea protein and 1·10 with Met supplementation, 1·29 for casein and 0·25 for gluten. Pea protein was highly digestible in rats under our experimental conditions, and Met supplementation enabled generation of a mixture that had a protein quality that was not different from that of casein.


Asunto(s)
Caseínas/metabolismo , Glútenes/metabolismo , Metionina/metabolismo , Pisum sativum/química , Proteínas de Plantas/metabolismo , Alimentación Animal/análisis , Animales , Caseínas/normas , Dieta , Glútenes/normas , Masculino , Metionina/normas , Nitrógeno/metabolismo , Valor Nutritivo , Proteínas de Plantas/química , Proteínas de Plantas/normas , Ratas
12.
Nutrients ; 12(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291464

RESUMEN

The gastrointestinal digestion of food proteins can generate peptides with a wide range of biological activities. In this study, we screened various potential bioactivities generated by plant-based proteins. Whey protein as an animal protein reference, five grades of pea protein, two grades of wheat protein, and potato, fava bean, and oat proteins were submitted to in vitro SGID. They were then tested in vitro for several bioactivities including measures on: (1) energy homeostasis through their ability to modulate intestinal hormone secretion, to inhibit DPP-IV activity, and to interact with opioid receptors; (2) anti-hypertensive properties through their ability to inhibit ACE activity; (3) anti-inflammatory properties in Caco-2 cells; (4) antioxidant properties through their ability to inhibit production of reactive oxygen species (ROS). Protein intestinal digestions were able to stimulate intestinal hormone secretion by enteroendocrine cells, to inhibit DPP-IV and ACE activities, to bind opioid receptors, and surprisingly, to decrease production of ROS. Neither pro- nor anti-inflammatory effects have been highlighted and some proteins lost their pro-inflammatory potential after digestion. The best candidates were pea, potato, and fava bean proteins.


Asunto(s)
Digestión/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Animales , Antioxidantes , Células CACO-2 , Citocinas/metabolismo , Dieta Vegetariana , Dipeptidil Peptidasa 4/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Fabaceae , Péptido 1 Similar al Glucagón , Humanos , Inflamación , Interleucina-8 , Intestinos , Tamizaje Masivo , Péptidos/química , Peptidil-Dipeptidasa A/efectos de los fármacos , Proteínas de Plantas/química , Hidrolisados de Proteína , Receptores Opioides , Proteína de Suero de Leche
13.
Nutrients ; 12(8)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784847

RESUMEN

This randomized trial compared pea protein, whey protein, and water-only supplementation on muscle damage, inflammation, delayed onset of muscle soreness (DOMS), and physical fitness test performance during a 5-day period after a 90-min eccentric exercise bout in non-athletic non-obese males (n = 92, ages 18-55 years). The two protein sources (0.9 g protein/kg divided into three doses/day) were administered under double blind procedures. The eccentric exercise protocol induced significant muscle damage and soreness, and reduced bench press and 30-s Wingate performance. Whey protein supplementation significantly attenuated post-exercise blood levels for biomarkers of muscle damage compared to water-only, with large effect sizes for creatine kinase and myoglobin during the fourth and fifth days of recovery (Cohen's d > 0.80); pea protein versus water supplementation had an intermediate non-significant effect (Cohen's d < 0.50); and no significant differences between whey and pea protein were found. Whey and pea protein compared to water supplementation had no significant effects on post-exercise DOMS and the fitness tests. In conclusion, high intake of whey protein for 5 days after intensive eccentric exercise mitigated the efflux of muscle damage biomarkers, with the intake of pea protein having an intermediate effect.


Asunto(s)
Suplementos Dietéticos , Músculo Esquelético/efectos de los fármacos , Mialgia/prevención & control , Proteínas de Guisantes/farmacología , Proteína de Suero de Leche/farmacología , Adolescente , Adulto , Biomarcadores/sangre , Proteína C-Reactiva/efectos de los fármacos , Creatina Quinasa/sangre , Método Doble Ciego , Prueba de Esfuerzo , Humanos , Masculino , Persona de Mediana Edad , Mioglobina/sangre , Aptitud Física/fisiología , Levantamiento de Peso/fisiología , Adulto Joven
14.
Artículo en Inglés | MEDLINE | ID: mdl-29177071

RESUMEN

BACKGROUND: Preload studies are used to investigate the satiating effects of foods and food ingredients. However, the design of preload studies is complex, with many methodological considerations influencing appetite responses. The aim of this pilot investigation was to determine acceptability, and optimise methods, for a future satiety preload study. Specifically, we investigated the effects of altering (i) energy intake at a standardised breakfast (gender-specific or non-gender specific), and (ii) the duration between mid-morning preload and ad libitum lunch meal, on morning appetite scores and energy intake at lunch. METHODS: Participants attended a single study visit. Female participants consumed a 214-kcal breakfast (n = 10) or 266-kcal breakfast (n = 10), equivalent to 10% of recommended daily energy intakes for females and males, respectively. Male participants (n = 20) consumed a 266-kcal breakfast. All participants received a 250-ml orange juice preload 2 h after breakfast. The impact of different study timings was evaluated in male participants, with 10 males following one protocol (protocol 1) and 10 males following another (protocol 2). The duration between preload and ad libitum lunch meal was 2 h (protocol 1) or 2.5 h (protocol 2), with the ad libitum lunch meal provided at 12.00 or 13.00, respectively. All female participants followed protocol 2. Visual analogue scale (VAS) questionnaires were used to assess appetite responses and food/drink palatability. RESULTS: Correlation between male and female appetite scores was higher with the provision of a gender-specific breakfast, compared to non-gender-specific breakfast (Pearson correlation of 0.747 and 0.479, respectively). No differences in subjective appetite or ad libitum energy intake were found between protocols 1 and 2. VAS mean ratings of liking, enjoyment, and palatability were all > 66 out of 100 mm for breakfast, preload, and lunch meals. CONCLUSIONS: The findings of this pilot study confirm the acceptability of this methodology for future satiety preload studies. Appetite scores increased from preload to ad libitum lunch meal; however, no specific differences were found between protocols. The results highlight the importance of considering energy intake prior to preload provision, with a gender-specific breakfast improving the correlation between male and female appetite score responses to a morning preload.

15.
J Med Food ; 19(5): 450-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27152976

RESUMEN

Chlorella sp. is a green microalgae containing nutrients, vitamins, minerals, and chlorophyll. In some communities, Chlorella sp. is a traditional medicinal plant used for the management of inflammation-related diseases. In a rat model, ROQUETTE Chlorella sp. (RCs) benefits were investigated on visceral pain and associated inflammatory parameters related to cystitis both induced by cyclophosphamide (CYP). RCs was orally administered every day from day 1-16 (250 and 500 mg/kg body weight). Six hours after an intraperitoneal injection of 200 mg/kg body weight of CYP, body temperature, general behavior, food intake, and body weight were recorded. Twenty-four hours after CYP injection, rats were tested in two behavioral tests, an open field and the aversive light stimulus avoidance conditioning test, to evaluate the influence of pain on general activity and learning ability of rats. After euthanasia, bladders were weighed, their thickness was scored, and the urinary hemoglobin was measured. RCs orally administered at the two dosages significantly reduced visceral pain and associated inflammatory parameters related to cystitis both induced by CYP injection, and improved rat behavior. To conclude, RCs demonstrated beneficial effects against visceral pain and cystitis.


Asunto(s)
Factores Biológicos/administración & dosificación , Chlorella/química , Cistitis/tratamiento farmacológico , Dolor Visceral/tratamiento farmacológico , Animales , Peso Corporal/efectos de los fármacos , Ciclofosfamida/administración & dosificación , Ciclofosfamida/efectos adversos , Cistitis/inducido químicamente , Cistitis/fisiopatología , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Femenino , Humanos , Ratas , Ratas Wistar , Dolor Visceral/inducido químicamente , Dolor Visceral/fisiopatología
16.
J Ginseng Res ; 39(2): 183-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26045693

RESUMEN

BACKGROUND: Gut microflora play a crucial role in the biotransformation of ginsenosides to compound K (CK), which may affect the pharmacological effects of ginseng. Prebiotics, such as NUTRIOSE, could enhance the formation and consequent absorption of CK through the modulation of gut microbial metabolic activities. In this study, the effect of a prebiotic fiber (NUTRIOSE) on the pharmacokinetics of ginsenoside CK, a bioactive metabolite of ginsenosides, and its mechanism of action were investigated. METHODS: Male Sprague-Dawley rats were given control or NUTRIOSE-containing diets (control diet + NUTRIOSE) for 2 wk, and ginseng extract or vehicle was then orally administered. Blood samples were collected to investigate the pharmacokinetics of CK using liquid chromatography-tandem mass spectrometry. Fecal activities that metabolize ginsenoside Rb1 to CK were assayed with fecal specimens or bacteria cultures. RESULTS: When ginseng extract was orally administered to rats fed with 2.5%, 5%, or 10% NUTRIOSE containing diets, the maximum plasma concentration (C max) and area under the plasma concentration-time curve values of CK significantly increased in a NUTRIOSE content-dependent manner. NUTRIOSE intake increased glycosidase activity and CK formation in rat intestinal contents. The CK-forming activities of intestinal microbiota cultured in vitro were significantly induced by NUTRIOSE. CONCLUSION: These results show that prebiotic diets, such as NUTRIOSE, may promote the metabolic conversion of ginsenosides to CK and the subsequent absorption of CK in the gastrointestinal tract and may potentiate the pharmacological effects of ginseng.

17.
Biomed Res Int ; 2015: 162398, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25977916

RESUMEN

The beneficial effects of carbohydrate-derived fibers are mainly attributed to modulation of the microbiota, increased colonic fermentation, and the production of short-chain fatty acids. We studied the direct immune responses to alimentary fibers in in vitro and in vivo models. Firstly, we evaluated the immunomodulation induced by nine different types of low-digestible fibers on human peripheral blood mononuclear cells. None of the fibers tested induced cytokine production in baseline conditions. However, only one from all fibers almost completely inhibited the production of anti- and proinflammatory cytokines induced by bacteria. Secondly, the impact of short- (five days) and long-term (three weeks) oral treatments with selected fibers was assessed in the trinitrobenzene-sulfonic acid colitis model in mice. The immunosuppressive fiber significantly reduced levels of inflammatory markers over both treatment periods, whereas a nonimmunomodulatory fiber had no effect. The two fibers did not differ in terms of the observed fermentation products and colonic microbiota after three weeks of treatment, suggesting that the anti-inflammatory action was not related to prebiotic properties. Hence, we observed a direct effect of a specific fiber on the murine immune system. This intrinsic, fiber-dependent immunomodulatory potential may extend prebiotic-mediated protection in inflammatory bowel disease.


Asunto(s)
Colitis/dietoterapia , Carbohidratos de la Dieta/administración & dosificación , Fibras de la Dieta/administración & dosificación , Inflamación/dietoterapia , Prebióticos/administración & dosificación , Animales , Antiinflamatorios/administración & dosificación , Colitis/inducido químicamente , Colitis/inmunología , Femenino , Humanos , Inmunomodulación/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/inmunología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Ratones
18.
Food Nutr Res ; 59: 25622, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25882536

RESUMEN

BACKGROUND: Pea protein (from Pisum sativum) is under consideration as a sustainable, satiety-inducing food ingredient. OBJECTIVE: In the current study, pea-protein-induced physiological signals relevant to satiety were characterized in vitro via gastric digestion kinetics and in vivo by monitoring post-meal gastrointestinal hormonal responses in rats. DESIGN: Under in vitro simulated gastric conditions, the digestion of NUTRALYS(®) pea protein was compared to that of two dairy proteins, slow-digestible casein and fast-digestible whey. In vivo, blood glucose and gastrointestinal hormonal (insulin, ghrelin, cholecystokinin [CCK], glucagon-like peptide 1 [GLP-1], and peptide YY [PYY]) responses were monitored in nine male Wistar rats following isocaloric (11 kcal) meals containing 35 energy% of either NUTRALYS(®) pea protein, whey protein, or carbohydrate (non-protein). RESULTS: In vitro, pea protein transiently aggregated into particles, whereas casein formed a more enduring protein network and whey protein remained dissolved. Pea-protein particle size ranged from 50 to 500 µm, well below the 2 mm threshold for gastric retention in humans. In vivo, pea-protein and whey-protein meals induced comparable responses for CCK, GLP-1, and PYY, that is, the anorexigenic hormones. Pea protein induced weaker initial, but equal 3-h integrated ghrelin and insulin responses than whey protein, possibly due to the slower gastric breakdown of pea protein observed in vitro. Two hours after meals, CCK levels were more elevated in the case of protein meals compared to that of non-protein meals. CONCLUSIONS: These results indicate that 1) pea protein transiently aggregates in the stomach and has an intermediately fast intestinal bioavailability in between that of whey and casein; 2) pea-protein- and dairy-protein-containing meals were comparably efficacious in triggering gastrointestinal satiety signals.

19.
Proc Nutr Soc ; 74(3): 258-67, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25721052

RESUMEN

Alterations in the composition and metabolic activity of the gut microbiota appear to contribute to the development of obesity and associated metabolic diseases. However, the extent of this relationship remains unknown. Modulating the gut microbiota with non-digestible carbohydrates (NDC) may exert anti-obesogenic effects through various metabolic pathways including changes to appetite regulation, glucose and lipid metabolism and inflammation. The NDC vary in physicochemical structure and this may govern their physical properties and fermentation by specific gut bacterial populations. Much research in this area has focused on established prebiotics, especially fructans (i.e. inulin and fructo-oligosaccharides); however, there is increasing interest in the metabolic effects of other NDC, such as resistant dextrin. Data presented in this review provide evidence from mechanistic and intervention studies that certain fermentable NDC, including resistant dextrin, are able to modulate the gut microbiota and may alter metabolic process associated with obesity, including appetite regulation, energy and lipid metabolism and inflammation. To confirm these effects and elucidate the responsible mechanisms, further well-controlled human intervention studies are required to investigate the impact of NDC on the composition and function of the gut microbiota and at the same time determine concomitant effects on host metabolism and physiology.


Asunto(s)
Fármacos Antiobesidad/farmacología , Dextrinas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Regulación del Apetito/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/metabolismo
20.
J Int Soc Sports Nutr ; 12(1): 3, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25628520

RESUMEN

BACKGROUND: The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. METHODS: One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. RESULTS: Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001). Thickness increased from 24.9 ± 3.8 mm to 26.9 ± 4.1 mm and 27.3 ± 4.4 mm at D0, D42 and D84, respectively, with only a trend toward significant differences between groups (P = 0.09). Performing a sensitivity study on the weakest participants (with regards to strength at inclusion), thickness increases were significantly different between groups (+20.2 ± 12.3%, +15.6 ± 13.5% and +8.6 ± 7.3% for Pea, Whey and Placebo, respectively; P < 0.05). Increases in thickness were significantly greater in the Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. CONCLUSIONS: In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. TRIAL REGISTRATION: The present trial has been registered at ClinicalTrials.gov (NCT02128516).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA