Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956762

RESUMEN

Transforming dissolved organic matter (DOM) is a crucial approach to alleviating the formation of disinfection byproducts (DBPs) in water treatment. Although catalytic ozonation effectively transforms DOM, increases in DBP formation potential are often observed due to the accumulation of aldehydes, ketones, and nitro compound intermediates during DOM transformation. In this study, we propose a novel strategy for the sequential oxidation of DOM, effectively reducing the levels of accumulation of these intermediates. This is achieved through the development of a catalyst with a tailored surface and nanoconfined active sites for catalytic ozonation. The catalyst features a unique confinement structure, wherein Mn-N4 moieties are uniformly anchored on the catalyst surface and within nanopores (5-20 Å). This design enables the degradation of the large molecular weight fraction of DOM on the catalyst surface, while the transformed smaller molecular weight fraction enters the nanopores and undergoes rapid degradation due to the confinement effect. The generation of *Oad as the dominant reactive species is essential for effectively reducing these ozone refractory intermediates. This resulted in over 70% removal of carbonaceous and nitrogenous DBP precursors as well as brominated DBP precursors. This study highlights the importance of the nanoscale sequential reactor design and provides new insights into eliminating DBP precursors by the catalytic ozonation process.

2.
Water Res ; 249: 121011, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101043

RESUMEN

Dissolved organic matter (DOM) is a major sink of radicals in advanced oxidation processes (AOPs) and the radical-induced DOM transformation influences the subsequent water treatment processes or receiving waters. In this study, we quantified and compared DOM transformation by tracking the changes of dissolved organic carbon (DOC), UVA254, and electron donating capacity (EDC) as functions of four one-electron oxidants (SO4•-, Cl2•-, Br2•-, and CO3•-) exposures as well as the changes of functional groups and molecule distribution. SO4•- had the highest DOC reduction while Cl2•- had the highest EDC reduction, which could be due to their preferential reaction pathways of decarboxylation and converting phenols to quinones, respectively. Br2•- and CO3•- induced less changes in DOC, UVA254, and EDC than SO4•- and Cl2•-. Additionally, DOM enriched with high aromatic contents tended to have higher DOC, UVA254, and EDC reductions. Decreases in hydroxyl and carboxyl groups and increases in carbonyl groups were observed in these four types of radicals treated DOM using Fourier transform infrared spectroscopy. High resolution mass spectrometry using FTICR-MS showed that one-electron oxidants preferred to attack unsaturated carbon skeletons and transformed into molecules featuring high saturation and low aromaticity. Moreover, SO4•- was inclined to decrease oxidation state of carbon and O/C of DOM due to its strong decarboxylation capacity. This study highlights the distinct DOM transformation by four one-electron oxidants and provides comprehensive insights into the reactions of one-electron oxidants with DOM.


Asunto(s)
Materia Orgánica Disuelta , Oxidantes , Antioxidantes , Electrones , Carbono/análisis
3.
Environ Sci Technol ; 57(47): 18597-18606, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36563128

RESUMEN

Radicals in advanced oxidation processes (AOPs) degrade micropollutants during water and wastewater treatment, but the transformation of dissolved organic matter (DOM) may be equally important. Ketone moieties in DOM are known disinfection byproduct precursors, but ketones themselves are intermediates produced during AOPs. We found that aromatic alcohols in DOM underwent transformation to ketones by one-electron oxidants (using SO4•- as a representative), and the formed ketones significantly increased trichloromethane (CHCl3) formation potential (FP) upon subsequent chlorination. CHCl3-FPs from aromatic ketones (Ar-CO-CH3, average of 22 mol/mol) were 6-24 times of CHCl3-FPs from aromatic alcohols (Ar-CH(OH)-CH3, average of 0.85 mol/mol). At a typical SO4•- exposure of 7.0 × 10-12 M·s, CHCl3-FPs from aromatic alcohol transformation increased by 24.8%-112% with an average increase of 53.4%. Notably, SO4•- oxidation of aliphatic alcohols resulted in minute changes in CHCl3-FPs due to their low reactivities with SO4•- (∼107 M-1 s-1). Other one-electron oxidants (Cl2•-, Br2•-,and CO3•-) are present in AOPs and also lead to aromatic alcohol-ketone transformations similar to SO4•-. This study highlights that subtle changes in DOM physicochemical properties due to one-electron oxidants can greatly affect the reactivity with free chlorine and the formation of chlorinated byproducts.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Oxidantes , Materia Orgánica Disuelta , Cloroformo , Cetonas , Electrones , Contaminantes Químicos del Agua/análisis , Cloro/química , Purificación del Agua/métodos , Halogenación , Desinfección , Alcohol Bencilo
4.
Environ Sci Technol ; 56(7): 4457-4466, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35302348

RESUMEN

Dissolved organic matter (DOM) scavenges sulfate radicals (SO4•-), and SO4•--induced DOM transformations influence disinfection byproduct (DBP) formation when chlorination follows advanced oxidation processes (AOPs) used for pollutant destruction during water and wastewater treatment. Competition kinetics experiments and transient kinetics experiments were conducted in the presence of 19 DOM fractions. Second-order reaction rate constants for DOM reactions with SO4•- (kDOM,SO4•-) ranged from (6.38 ± 0.53) × 106 M-1 s-1 to (3.68 ± 0.34) × 107 MC-1 s-1. kDOM,SO4•- correlated with specific absorbance at 254 nm (SUVA254) (R2 = 0.78) or total antioxidant capacity (R2 = 0.78), suggesting that DOM with more aromatics and antioxidative moieties reacted faster with SO4•-. SO4•- exposure activated DBP precursors and increased carbonaceous DBP (C-DBP) yields (e.g., trichloromethane, chloral hydrate, and 1,1,1-trichloropropanone) in humic acid and fulvic acid DOM fractions despite the great reduction in their organic carbon, chromophores, and fluorophores. Conversely, SO4•--induced reactions reduced nitrogenous DBP yields (e.g., dichloroacetonitrile and trichloronitromethane) in wastewater effluent organic matter and algal organic matter without forming more C-DBP precursors. DBP formation as a function of SO4•- exposure (concentration × time) provides guidance on optimization strategies for SO4•--based AOPs in realistic water matrices.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Materia Orgánica Disuelta , Halogenación , Cinética , Sulfatos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA