Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37371747

RESUMEN

Propentofylline (PROP) is a methylated xanthine compound that diminishes the activation of microglial cells and astrocytes, which are neuronal cells strongly associated with many neurodegenerative diseases. Based on previously observed remyelination and neuroprotective effects, PROP has also been proposed to increment antioxidant defenses and to prevent oxidative damage in neural tissues. Since most neurodegenerative processes have free radicals as molecular pathological agents, the aim of this study was to evaluate the antioxidant effects of 12.5 mg·kg-1·day-1 PROP in plasma and the brainstem of Wistar rats exposed to the gliotoxic agent 0.1% ethidium bromide (EB) for 7-31 days. The bulk of the data here demonstrates that, after 7 days of EB treatment, TBARS levels were 2-fold higher in the rat CNS than in control, reaching a maximum of 2.4-fold within 15 days. After 31 days of EB treatment, lipoperoxidation in CNS was still 65% higher than that in the control. Clearly, PROP treatment limited the progression of lipoperoxidation in EB-oxidized CNS: it was, for example, 76% lower than in the EB-treated group after 15 days. Most of these effects were associated with PROP-induced activity of glutathione reductase in the brainstem: the EB + PROP group showed 59% higher GR activity than that of the EB or control groups within 7 days. In summary, aligning with previous studies from our group and with literature about MTXs, we observed that propentofylline (PROP) improved the thiol-based antioxidant defenses in the rat brainstem by the induction of the enzymatic activity of glutathione reductase (GR), which diminished lipid oxidation progression and rebalanced the redox status in the CNS.

2.
Mar Drugs ; 13(10): 6117-37, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26426026

RESUMEN

Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.


Asunto(s)
Ácidos Grasos Omega-3/administración & dosificación , Aceites de Pescado/administración & dosificación , Oxidación-Reducción/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Biomasa , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Suplementos Dietéticos , Euphausiacea , Ácidos Grasos Omega-3/farmacología , Aceites de Pescado/farmacología , Inflamación/prevención & control , Masculino , Corteza Motora/efectos de los fármacos , Corteza Motora/metabolismo , Ratas , Ratas Wistar , Xantófilas/administración & dosificación , Xantófilas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA