Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(30): 11187-92, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25024231

RESUMEN

Recent analyses in flies, mice, zebrafish, and humans showed that mutations in prickle orthologs result in epileptic phenotypes, although the mechanism responsible for generating the seizures was unknown. Here, we show that Prickle organizes microtubule polarity and affects their growth dynamics in axons of Drosophila neurons, which in turn influences both anterograde and retrograde vesicle transport. We also show that enhancement of the anterograde transport mechanism is the cause of the seizure phenotype in flies, which can be suppressed by reducing the level of either of two Kinesin motor proteins responsible for anterograde vesicle transport. Additionally, we show that seizure-prone prickle mutant flies have electrophysiological defects similar to other fly mutants used to study seizures, and that merely altering the balance of the two adult prickle isoforms in neurons can predispose flies to seizures. These data reveal a previously unidentified pathway in the pathophysiology of seizure disorders and provide evidence for a more generalized cellular mechanism whereby Prickle mediates polarity by influencing microtubule-mediated transport.


Asunto(s)
Axones/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas con Dominio LIM/metabolismo , Microtúbulos/metabolismo , Convulsiones/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas con Dominio LIM/genética , Ratones , Microtúbulos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Convulsiones/genética
2.
Methods Enzymol ; 499: 205-25, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21683256

RESUMEN

Members of the serpin superfamily of proteins have been found in all living organisms, although rarely in bacteria or fungi. They have been extensively studied in mammals, where many rapid physiological responses are regulated by inhibitory serpins. In addition to the inhibitory serpins, a large group of noninhibitory proteins with a conserved serpin fold have also been identified in mammals. These noninhibitory proteins have a wide range of functions, from storage proteins to molecular chaperones, hormone transporters, and tumor suppressors. In contrast, until recently, very little was known about insect serpins in general, or Drosophila serpins in particular. In the last decade, however, there has been an increasing interest in the serpin biology of insects. It is becoming clear that, like in mammals, a similar wide range of physiological responses are regulated in insects and that noninhibitory serpin-fold proteins also play key roles in insect biology. Drosophila is also an important model organism that can be used to study human pathologies (among which serpinopathies or other protein conformational diseases) and mechanisms of regulation of proteolytic cascades in health or to develop strategies for control of insect pests and disease vectors. As most of our knowledge on insect serpins comes from studies on the Drosophila immune response, we survey here the Drosophila serpin literature and describe the laboratory techniques that have been developed to study serpin-regulated responses in this model genetic organism.


Asunto(s)
Proteínas de Drosophila/inmunología , Proteínas de Drosophila/metabolismo , Drosophila/inmunología , Drosophila/metabolismo , Serpinas/inmunología , Serpinas/metabolismo , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Morfogénesis/genética , Morfogénesis/fisiología , Serpinas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
3.
Mol Cell Biol ; 31(14): 2960-72, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21576362

RESUMEN

The Drosophila genome encodes 29 serpins, most of unknown function. We show here that Spn1 is an active protease inhibitor of the serpin superfamily. Spn1 inhibits trypsin in vitro and regulates the Toll-mediated immune response in vivo. Expression of the Toll-dependent transcripts Drosomycin and IM1 is increased in Spn1 null mutants. Overexpression of Spn1 reduces the induction of Drosomycin upon immune challenge with fungi but not Gram-positive bacteria. Similar reductions in Drosomycin levels are observed in the psh, spz, and grass mutants of the Toll signaling pathway. These results support a role of Spn1 as a repressor of Toll activation upon fungal infection. Epistatic analysis places Spn1 upstream of Spätzle processing enzyme and Grass, in the fungal cell wall-activated side branch of the pathway. Overexpression of the pattern recognition receptor GNBP3 activates the ß-1,3-glucan-sensitive side branch of the Toll pathway. The resultant increased Drosomycin level is reduced by concomitant overexpression of Spn1, confirming that Spn1 regulates the fungal cell wall side branch. Spn1 null mutants show altered susceptibility to fungal infection compared to the wild type, demonstrating a requirement for Spn1 in the fine regulation of the immune response.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Inhibidores de Proteasas/metabolismo , Serpinas/metabolismo , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Epistasis Genética , Hongos/inmunología , Hongos/patogenicidad , Humanos , Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular , Micosis/inmunología , Interferencia de ARN , Serpinas/genética , Tasa de Supervivencia , Receptores Toll-Like/genética
4.
Biochimie ; 92(12): 1749-59, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20850496

RESUMEN

Proteolytic signalling cascades control a wide range of physiological responses. In order to respond rapidly, protease activity must be maintained at a basal level: the component zymogens must be sequentially activated and actively degraded. At the same time, signalling cascades must respond precisely: high target specificity is required. The insects have a wide range of trapping- and tight-binding protease inhibitors, which can regulate the activity of individual proteases. In addition, the interactions between component proteases of a signalling cascade can be modified by serine protease homologues. The suicide-inhibition mechanism of serpin family inhibitors gives rapid turnover of both protease and inhibitor, but target specificity is inherently broad. Similarly, the TEP/macroglobulins have extremely broad target specificity, which suits them for roles as hormone transport proteins and sensors of pathogenic virulence factors. The tight-binding inhibitors, on the other hand, have a lock-and-key mechanism capable of high target specificity. In addition, proteins containing multiple tight-binding inhibitory domains may act as scaffolds for the assembly of signalling complexes. Proteolytic cascades regulated by combinations of different types of inhibitor could combine the rapidity of suicide-inhibitors with the specificity lock-and-key inhibitors. This would allow precise control of physiological responses and may turn out to be a general rule.


Asunto(s)
Proteínas de Insectos/metabolismo , Insectos/metabolismo , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/metabolismo , Transducción de Señal , Animales , Macroglobulinas/metabolismo , Inhibidores de Proteasas/clasificación , Serpinas/metabolismo
5.
BMC Genomics ; 10: 489, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19849829

RESUMEN

BACKGROUND: The Drosophila melanogaster genome contains 29 serpin genes, 12 as single transcripts and 17 within 6 gene clusters. Many of these serpins have a conserved "hinge" motif characteristic of active proteinase inhibitors. However, a substantial proportion (42%) lacks this motif and represents non-inhibitory serpin-fold proteins of unknown function. Currently, it is not known whether orthologous, inhibitory serpin genes retain the same target proteinase specificity within the Drosophilid lineage, nor whether they give rise to non-inhibitory serpin-fold proteins or other, more diverged, proteins. RESULTS: We collated 188 orthologues to the D. melanogaster serpins from the other 11 Drosophilid genomes and used synteny to find further family members, raising the total to 226, or 71% of the number of orthologues expected assuming complete conservation across all 12 Drosophilid species. In general the sequence constraints on the serpin-fold itself are loose. The critical Reactive Centre Loop (RCL) sequence, including the target proteinase cleavage site, is strongly conserved in inhibitory serpins, although there are 3 exceptional sets of orthologues in which the evolutionary constraints are looser. Conversely, the RCL of non-inhibitory serpin orthologues is less conserved, with 3 exceptions that presumably bind to conserved partner molecules. We derive a consensus hinge motif, for Drosophilid inhibitory serpins, which differs somewhat from that of the vertebrate consensus. Three gene clusters appear to have originated in the melanogaster subgroup, Spn28D, Spn77B and Spn88E, each containing one inhibitory serpin orthologue that is present in all Drosophilids. In addition, the Spn100A transcript appears to represent a novel serpin-derived fold. CONCLUSION: In general, inhibitory serpins rarely change their range of proteinase targets, except by a duplication/divergence mechanism. Non-inhibitory serpins appear to derive from inhibitory serpins, but not the reverse. The conservation of different family members varied widely across the 12 sequenced Drosophilid genomes. An approach considering synteny as well as homology was important to find the largest set of orthologues.


Asunto(s)
Drosophilidae/genética , Genoma de los Insectos , Serpinas/genética , Sintenía , Secuencia de Aminoácidos , Animales , Hibridación Genómica Comparativa , Secuencia Conservada , Evolución Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Alineación de Secuencia , Análisis de Secuencia de ADN
6.
J Biol Chem ; 284(51): 35652-8, 2009 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19858208

RESUMEN

Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins (SPN40, SPN55, and SPN48) from the hemolymph of T. molitor. These serpins made specific serpin-serine protease pairs with three Toll cascade-activating serine proteases, such as modular serine protease, Spätzle-processing enzyme-activating enzyme, and Spätzle-processing enzyme and cooperatively blocked the Toll signaling cascade and beta-1,3-glucan-mediated melanin biosynthesis. Also, the levels of SPN40 and SPN55 were dramatically increased in vivo by the injection of a Toll ligand, processed Spätzle, into Tenebrio larvae. This increase in SPN40 and SPN55 levels indicates that these serpins function as inducible negative feedback inhibitors. Unexpectedly, SPN55 and SPN48 were cleaved at Tyr and Glu residues in reactive center loops, respectively, despite being targeted by trypsin-like Spätzle-processing enzyme-activating enzyme and Spätzle-processing enzyme. These cleavage patterns are also highly similar to those of unusual mammalian serpins involved in blood coagulation and blood pressure regulation, and they may contribute to highly specific and timely inactivation of detrimental serine proteases during innate immune responses. Taken together, these results demonstrate the specific regulatory evidences of innate immune responses by three novel serpins.


Asunto(s)
Inmunidad Innata/fisiología , Proteínas de Insectos/metabolismo , Serpinas/metabolismo , Tenebrio/metabolismo , Animales , Hemolinfa/inmunología , Hemolinfa/metabolismo , Proteínas de Insectos/inmunología , Serpinas/inmunología , Tenebrio/inmunología , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo
7.
PLoS Genet ; 5(6): e1000532, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19557185

RESUMEN

The humoral response to fungal and Gram-positive infections is regulated by the serpin-family inhibitor, Necrotic. Following immune-challenge, a proteolytic cascade is activated which signals through the Toll receptor. Toll activation results in a range of antibiotic peptides being synthesised in the fat-body and exported to the haemolymph. As with mammalian serpins, Necrotic turnover in Drosophila is rapid. This serpin is synthesised in the fat-body, but its site of degradation has been unclear. By "freezing" endocytosis with a temperature sensitive Dynamin mutation, we demonstrate that Necrotic is removed from the haemolymph in two groups of giant cells: the garland and pericardial athrocytes. Necrotic uptake responds rapidly to infection, being visibly increased after 30 mins and peaking at 6-8 hours. Co-localisation of anti-Nec with anti-AP50, Rab5, and Rab7 antibodies establishes that the serpin is processed through multi-vesicular bodies and delivered to the lysosome, where it co-localises with the ubiquitin-binding protein, HRS. Nec does not co-localise with Rab11, indicating that the serpin is not re-exported from athrocytes. Instead, mutations which block late endosome/lysosome fusion (dor, hk, and car) cause accumulation of Necrotic-positive endosomes, even in the absence of infection. Knockdown of the 6 Drosophila orthologues of the mammalian LDL receptor family with dsRNA identifies LpR1 as an enhancer of the immune response. Uptake of Necrotic from the haemolymph is blocked by a chromosomal deletion of LpR1. In conclusion, we identify the cells and the receptor molecule responsible for the uptake and degradation of the Necrotic serpin in Drosophila melanogaster. The scavenging of serpin/proteinase complexes may be a critical step in the regulation of proteolytic cascades.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Serpinas/metabolismo , Animales , Transporte Biológico , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Hemolinfa/metabolismo , Lisosomas/metabolismo , Micrococcus luteus/inmunología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/inmunología , Inhibidores de Serina Proteinasa/inmunología , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/inmunología
8.
Dev Biol ; 325(2): 386-99, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19028485

RESUMEN

Prickle-Spiny-Legs (Pk) is an essential component of the planar cell polarity (PCP) pathway, together with Frizzled (Fz) and Dishevelled (Dsh). A role for Pk was proposed to mediate feedback amplification of asymmetric Fz/Dsh activity across cell boundaries, ensuring a single prehair initiates at each distal vertex. Here we show that apical localisation of Pk(Pk) and Pk(Sple) isoforms are mutually independent and regulated by the C-terminal domain. The N-terminus of Pk(Pk) is dispensable for PCP, whereas the unique N-terminal domain of Pk(Sple) contains an additional localisation function, which confers a qualitatively different activity. Our results suggest that endogenous Pk(Pk) and Pk(Sple) can affect each other's function via the C-terminal domain, yet may not form heteromeric complexes. Overexpressing PET domain-deleted Pk variants interferes with a branch of Fz/Dsh signalling that regulates the number of wing hairs, and blocks non-cell-autonomous repolarisation. We infer that Pk(Pk) is sufficient to mediate the intercellular feedback signalling. Significantly, Pk(Pk) but not Pk(Sple) is required for hexagonal cell packing in the pupal wing. We propose that Fz-dependent PCP readout reflects short-range, cell-contact based, interactions between hexagonal cells, rather than a direct response to an as yet unidentified diffusible ligand.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Proteínas Dishevelled , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas con Dominio LIM , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Estructura Terciaria de Proteína , Pupa/citología , Pupa/crecimiento & desarrollo , Pupa/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
9.
Genetics ; 180(1): 219-28, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18723886

RESUMEN

The frizzled signaling/signal transduction pathway controls planar cell polarity (PCP) in both vertebrates and invertebrates. Epistasis experiments argue that in the Drosophila epidermis multiple wing hairs (mwh) acts as a downstream component of the pathway. The PCP proteins accumulate asymmetrically in pupal wing cells where they are thought to form distinct protein complexes. One is located on the distal side of wing cells and a second on the proximal side. This asymmetric protein accumulation is thought to lead to the activation of the cytoskeleton on the distal side, which in turn leads to each cell forming a single distally pointing hair. We identified mwh as CG13913, which encodes a novel G protein binding domain-formin homology 3 (GBD-FH3) domain protein. The Mwh protein accumulated on the proximal side of wing cells prior to hair formation. Unlike planar polarity proteins such as Frizzled or Inturned, Mwh also accumulated in growing hairs. This suggested that mwh had two temporally separate functions in wing development. Evidence for these two functions also came from temperature-shift experiments with a temperature-sensitive allele. Overexpression of Mwh inhibited hair initiation, thus Mwh acts as a negative regulator of the cytoskeleton. Our data argued early proximal Mwh accumulation restricts hair initiation to the distal side of wing cells and the later hair accumulation of Mwh prevents the formation of ectopic secondary hairs. This later function appears to be a feedback mechanism that limits cytoskeleton activation to ensure a single hair is formed.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Alas de Animales/patología , Actinas/genética , Alelos , Animales , Clonación Molecular , Citoesqueleto/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Receptores Frizzled/genética , Proteínas de Unión al GTP/metabolismo , Modelos Genéticos , Mutación , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Temperatura , Alas de Animales/metabolismo
10.
Genetics ; 177(1): 615-29, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17720900

RESUMEN

We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering approximately 77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks. In addition to deletions, we demonstrate how the P elements may also be used to generate a set of custom inversions and duplications, particularly useful for balancing difficult regions of the genome carrying haplo-insufficient loci. We describe a simple computational resource that facilitates selection of appropriate elements for generating custom deletions. Finally, we provide a computational resource that facilitates selection of other mapped FRT-bearing elements that, when combined with the DrosDel collection, can theoretically generate over half a million precisely mapped deletions.


Asunto(s)
Aberraciones Cromosómicas , Elementos Transponibles de ADN , Drosophila melanogaster/genética , Genoma , Eliminación de Secuencia , Animales , Datos de Secuencia Molecular
11.
J Biol Chem ; 281(39): 29268-77, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16849336

RESUMEN

Alzheimer disease is characterized by extracellular plaques composed of Abeta peptides. We show here that these plaques also contain the serine protease inhibitor neuroserpin and that neuroserpin forms a 1:1 binary complex with the N-terminal or middle parts of the Abeta(1-42) peptide. This complex inactivates neuroserpin as an inhibitor of tissue plasminogen activator and blocks the loop-sheet polymerization process that is characteristic of members of the serpin superfamily. In contrast neuroserpin accelerates the aggregation of Abeta(1-42) with the resulting species having an appearance that is distinct from the mature amyloid fibril. Neuroserpin reduces the cytotoxicity of Abeta(1-42) when assessed using standard cell assays, and the interaction has been confirmed in vivo in novel Drosophila models of disease. Taken together, these data show that neuroserpin interacts with Abeta(1-42) to form off-pathway non-toxic oligomers and so protects neurons in Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Neuropéptidos/química , Placa Amiloide/metabolismo , Serpinas/química , Animales , Fenómenos Biofísicos , Biofisica , Drosophila , Humanos , Células PC12 , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Tripsina/química , Neuroserpina
12.
J Biol Chem ; 281(36): 26437-43, 2006 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16835244

RESUMEN

Necrotic is a member of the serine protease inhibitor or serpin superfamily. It is a potent inhibitor of elastase and chymotrypsin type proteases and is responsible for regulating the anti-fungal response in Drosophila melanogaster. Necrotic contains three basic lysine residues within the D-helix that are homologous to those found in the heparin-binding domain of antithrombin and heparin co-factor II. We show here that substitution of all three lysine residues for glutamines caused cellular necrosis and premature death in Drosophila in keeping with a loss of function phenotype. The lysine to glutamine substitutions had no effect on the overall structure of recombinant Necrotic protein but abolished the formation of stable complexes with target proteases. Individual substitutions with either glutamine or alanine demonstrated that lysine 68 was the most critical residue for inhibitory activity. Despite the homology to other serpins, Necrotic did not bind, nor was it activated by sulfated glycans. These data demonstrate a critical role for basic residues within the D-helix (and lysine 68 in particular) in the inhibitory mechanism of the serpin Necrotic.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Lisina/metabolismo , Estructura Secundaria de Proteína , Inhibidores de Serina Proteinasa , Serpinas , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Heparina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/química , Serpinas/genética , Serpinas/metabolismo
13.
Insect Biochem Mol Biol ; 36(1): 37-46, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16360948

RESUMEN

The Drosophila Necrotic protein is a serine proteinase inhibitor, which regulates the Toll-mediated innate immune response. Necrotic specifically inhibits an extracellular serine proteinase cascade leading to activation of the Toll ligand, Spätzle. Necrotic carries a polyglutamine extension amino-terminal to the core serpin structure. We show here that cleavage of this N-terminal extension occurs following immune challenge. This modification is blocked in PGRP-SA(semmelweiss) mutants after Gram-positive bacterial challenge and in persephone mutants after fungal or Gram-positive bacterial challenge, indicating that activation of either of the Toll pathway upstream branches induces N-terminal cleavage of the serpin. The absolute requirement of persephone gene product for this cleavage indicates that Gram-positive bacteria activate a redundant set of proteinases upstream of Toll. Both full-length Necrotic and the core serpin are active inhibitors of a range of serine proteinases: the highest affinity being for cathepsin G and elastases. We found a 13-fold increase in the specificity of the core serpin over that of full-length Necrotic for one of the tested proteinases (porcine pancreatic elastase). This finding indicates that cleavage of the Necrotic amino-terminal extension might modulate Toll activation following the initial immune response.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Serpinas/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Regulación de la Expresión Génica , Conformación Proteica , Serpinas/genética , Serpinas/inmunología , Transducción de Señal
14.
Genetics ; 167(2): 797-813, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15238529

RESUMEN

We describe a collection of P-element insertions that have considerable utility for generating custom chromosomal aberrations in Drosophila melanogaster. We have mobilized a pair of engineered P elements, p[RS3] and p[RS5], to collect 3243 lines unambiguously mapped to the Drosophila genome sequence. The collection contains, on average, an element every 35 kb. We demonstrate the utility of the collection for generating custom chromosomal deletions that have their end points mapped, with base-pair resolution, to the genome sequence. The collection was generated in an isogenic strain, thus affording a uniform background for screens where sensitivity to genetic background is high. The entire collection, along with a computational and genetic toolbox for designing and generating custom deletions, is publicly available. Using the collection it is theoretically possible to generate >12,000 deletions between 1 bp and 1 Mb in size by simple eye color selection. In addition, a further 37,000 deletions, selectable by molecular screening, may be generated. We are now using the collection to generate a second-generation deficiency kit that is precisely mapped to the genome sequence.


Asunto(s)
Aberraciones Cromosómicas , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Animales , Técnicas Genéticas , Mutagénesis Insercional/métodos
15.
Development ; 130(7): 1473-8, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12588861

RESUMEN

Polymerization of members of the serpin superfamily underlies diseases as diverse as cirrhosis, angioedema, thrombosis and dementia. The Drosophila serpin Necrotic controls the innate immune response and is homologous to human alpha(1)-antitrypsin. We show that necrotic mutations that are identical to the Z-deficiency variant of alpha(1)-antitrypsin form urea-stable polymers in vivo. These necrotic mutations are temperature sensitive, which is in keeping with the temperature-dependent polymerization of serpins in vitro and the role of childhood fevers in exacerbating liver disease in Z alpha-antitrypsin deficiency. In addition, we identify two nec mutations homologous to an antithrombin point mutation that is responsible for neonatal thrombosis. Transgenic flies carrying an S>F amino-acid substitution equivalent to that found in Siiyama-variant antitrypsin (nec(S>F.UAS)) fail to complement nec-null mutations and demonstrate a dominant temperature-dependent inactivation of the wild-type nec allele. Taken together, these data establish Drosophila as a powerful system to study serpin polymerization in vivo.


Asunto(s)
Drosophila/genética , Necrosis , Serpinas/genética , Animales , Drosophila/fisiología , Humanos , Serpinas/fisiología , Serpinas/toxicidad , Temperatura , Urea/metabolismo
16.
J Biol Chem ; 278(8): 6175-80, 2003 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-12414799

RESUMEN

Necrotic (Nec) is an important component of the proteolytic cascade that activates the Toll-mediated immune response in Drosophila. The Nec protein is a member of the serpin (SERine Protease INhibitor) superfamily and is thought to regulate the cascade by inhibiting the serine protease Persephone. Nec was expressed in Escherichia coli, and the purified protein folded to the active native conformation required for protease inhibitory activity. Biochemical analysis showed that Nec had a broad inhibitory specificity and inhibited elastase, thrombin, and chymotrypsin-like proteases. It did not inhibit trypsin or kallikrein. These data show that Necrotic is likely to inhibit a wide range of proteases in Drosophila and that Nec has the specificity requirements to act as the physiological inhibitor of Persephone in vivo.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila/inmunología , Receptores de Superficie Celular/inmunología , Serpinas/fisiología , Animales , Clonación Molecular , Drosophila/fisiología , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Endopeptidasas/metabolismo , Escherichia coli/inmunología , Cinética , Lipopolisacáridos/inmunología , Mamíferos , Modelos Moleculares , Estructura Secundaria de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Eliminación de Secuencia , Serpinas/inmunología , Receptores Toll-Like
17.
Immunity ; 17(5): 575-81, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12433364

RESUMEN

Drosophila responds to Gram-negative infections by mounting an immune response that depends on components of the IMD pathway. We recently showed that imd encodes a protein with a death domain with high similarity to that of mammalian RIP. Using a two-hybrid screen in yeast, we have isolated the death protein dFADD as a molecule that associates with IMD. Our data show that loss of dFADD function renders flies highly susceptible to Gram-negative infections without affecting resistance to Gram-positive bacteria. By genetic analysis we show that dFADD acts downstream of IMD in the pathway that controls inducibility of the antibacterial peptide genes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/inmunología , Proteínas de Drosophila/inmunología , Drosophila/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Animales , Drosophila/microbiología , Proteína de Dominio de Muerte Asociada a Fas , Regulación de la Expresión Génica/inmunología , Inmunidad , Transducción de Señal/inmunología
19.
Cell ; 109(3): 371-81, 2002 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-12015986

RESUMEN

Planar cell polarity signaling in Drosophila requires the receptor Frizzled and the cytoplasmic proteins Dishevelled and Prickle. From initial, symmetric subcellular distributions in pupal wing cells, Frizzled and Dishevelled become highly enriched at the distal portion of the cell cortex. We describe a Prickle-dependent intercellular feedback loop that generates asymmetric Frizzled and Dishevelled localization. In the absence of Prickle, Frizzled and Dishevelled remain symmetrically distributed. Prickle localizes to the proximal side of pupal wing cells and binds the Dishevelled DEP domain, inhibiting Dishevelled membrane localization and antagonizing Frizzled accumulation. This activity is linked to Frizzled activity on the adjacent cell surface. Prickle therefore functions in a feedback loop that amplifies differences between Frizzled levels on adjacent cell surfaces.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Drosophila/metabolismo , Retroalimentación Fisiológica/fisiología , Alas de Animales/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Polaridad Celular/genética , Clonación Molecular , Citoplasma/metabolismo , Proteínas Dishevelled , Drosophila/anatomía & histología , Drosophila/genética , Epistasis Genética , Receptores Frizzled , Humanos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas con Dominio LIM , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Osteosarcoma/genética , Osteosarcoma/patología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Pupa , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G , Transducción de Señal , Células Tumorales Cultivadas , Alas de Animales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA