Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Acoust Soc Am ; 132(4): 2359-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23039432

RESUMEN

Although reliable methods exist to predict the apparent sound reduction index of heavy, homogeneous isotopic building constructions, these methods are not appropriate for use with lightweight building constructions which typically have critical frequencies in or above the frequency range of interest. Three main methods have been proposed for extending the prediction of flanking sound transmission to frequencies below the critical frequency. The first method is the direct prediction which draws on a database of measurements of the flanking transmission of individual flanking paths. The second method would be a modification of the method in existing standards. This method requires the calculation of the resonant sound transmission factors. However, most of the approaches proposed to calculate the resonant sound transmission factor work only for the case of single leaf homogeneous isotropic building elements and therefore are not readily applicable to complex building elements. The third method is the measurement or prediction of the resonant radiation efficiency and the airborne diffuse field excited radiation efficiency which includes both the resonant and the non-resonant radiation efficiencies. The third method can currently deal with complex building elements if the radiation efficiencies can be measured or predicted. This paper examines these prediction methods.


Asunto(s)
Acústica , Materiales de Construcción , Arquitectura y Construcción de Instituciones de Salud , Modelos Teóricos , Sonido , Movimiento (Física) , Ruido/prevención & control , Factores de Tiempo , Vibración
2.
J Acoust Soc Am ; 131(6): 4615-24, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22712935

RESUMEN

The effect of the resilience of the steel studs on the sound insulation of steel stud cavity walls can be modeled as an equivalent translational compliance in simple models for predicting the sound insulation of walls. Recent numerical calculations have shown that this equivalent translational compliance varies with frequency. This paper determines the values of the equivalent translational compliance of steel studs which make a simple sound insulation theory agree best with experimental sound insulation data for 126 steel stud cavity walls with gypsum plaster board on each side of the steel studs and sound absorbing material in the wall cavity. These values are approximately constant as a function of frequency up to 400 Hz. Above 400 Hz they decrease approximately as a non-integer power of the frequency. The equivalent translational compliance also depends on the mass per unit surface area of the cladding on each side of the steel studs and on the width of the steel studs. Above 400 Hz, this compliance also depends on the stud spacing. The best fit approximation is used with a simple sound insulation prediction model to predict the sound insulation of steel stud cavity walls whose sound insulation has been determined experimentally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA