Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397013

RESUMEN

Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.


Asunto(s)
Sobrecarga de Hierro , Enfermedades Neurodegenerativas , Humanos , Encéfalo , Barrera Hematoencefálica/fisiología , Hierro , Sobrecarga de Hierro/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico
2.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255803

RESUMEN

Excessive iron levels are believed to contribute to the development of neurodegenerative disorders by promoting oxidative stress and harmful protein clustering. Novel chelation treatments that can effectively remove excess iron while minimizing negative effects on the nervous system are being explored. This study focuses on the creation and evaluation of innovative nanobubble (NB) formulations, shelled with various polymers such as glycol-chitosan (GC) and glycol-chitosan conjugated with deferoxamine (DFO), to enhance their ability to bind iron. Various methods were used to evaluate their physical and chemical properties, chelation capacity in diverse iron solutions and impact on reactive oxygen species (ROS). Notably, the GC-DFO NBs demonstrated the ability to decrease amyloid-ß protein misfolding caused by iron. To assess potential toxicity, in vitro cytotoxicity testing was conducted using organotypic brain cultures from the substantia nigra, revealing no adverse effects at appropriate concentrations. Additionally, the impact of NBs on spontaneous electrical signaling in hippocampal neurons was examined. Our findings suggest a novel nanochelation approach utilizing DFO-conjugated NBs for the removal of excess iron in cerebral regions, potentially preventing neurotoxic effects.


Asunto(s)
Sobrecarga de Hierro , Hierro , Humanos , Sistema Nervioso Central , Encéfalo , Péptidos beta-Amiloides
3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37958582

RESUMEN

In both healthcare and agriculture, antibiotic resistance is an alarming issue. Biocompatible and biodegradable ingredients (e.g., curcumin) are given priority in "green" criteria supported by the Next Generation EU platform. The solubility and stability of curcumin would be significantly improved if it were enclosed in nanobubbles (NB), and photoactivation with the correct wavelength of light can increase its antibacterial efficacy. A continuous release of curcumin over a prolonged period was provided by using innovative chitosan-shelled carriers, i.e., curcumin-containing nanobubbles (Curc-CS-NBs) and oxygen-loaded curcumin-containing nanobubbles (Curc-Oxy-CS-NBs). The results demonstrated that after photoactivation, both types of NBs exhibited increased effectiveness. For Staphylococcus aureus, the minimum inhibitory concentration (MIC) for Curc-CS-NBs remained at 46 µg/mL following photodynamic activation, whereas it drastically dropped to 12 µg/mL for Curc-Oxy-CS-NBs. Enterococcus faecalis shows a decreased MIC for Curc-CS-NB and Curc-Oxy-CS-NB (23 and 46 µg/mL, respectively). All bacterial strains were more effectively killed by NBs that had both oxygen and LED irradiation. A combination of Curc-Oxy-CS-NB and photodynamic stimulation led to a killing of microorganisms due to ROS-induced bacterial membrane leakage. This approach was particularly effective against Escherichia coli. In conclusion, this work shows that Curc-CS-NBs and Curc-Oxy-CS-exhibit extremely powerful antibacterial properties and represent a potential strategy to prevent antibiotic resistance and encourage the use of eco-friendly substitutes in agriculture and healthcare.


Asunto(s)
Antiinfecciosos , Quitosano , Curcumina , Curcumina/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Quitosano/farmacología , Solubilidad
4.
Molecules ; 28(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37959823

RESUMEN

Iron, a crucial element in our environment, plays a vital role in numerous natural processes. Understanding the presence and concentration of iron in the environment is very important as it impacts various aspects of our planet's health. The on-site detection and speciation of iron are significant for several reasons. In this context, the present work aims to evaluate the applicability of voltammetry for the on-site determination of iron and its possible speciation using a portable voltammetric analyzer. Voltammetry offers the advantage of convenience and cost-effectiveness. For iron (III) determination, the modification of a glassy carbon electrode (GCE) with an antimony-bismuth film (SbBiFE) using the acetate buffer (pH = 4) as a supporting electrolyte was used. The technique adopted was Square Wave Adsoptive Cathodic Stripping Voltammetry (SW-AdCSV), and we used 1-(2-piridylazo)-2-naphthol (PAN) as the iron (III) ligand. Linearity, repeatability, detection limit, and accuracy were determined using synthetic solutions; then, a Standard Reference Material (SRM) of 1643f Trace Elements in Water (iron content: 93.44 ± 0.78 µg L-1) was used for validation measurements in the real matrix. the accuracy of this technique was found to be excellent since we obtained a recovery of 103.16%. The procedure was finally applied to real samples (tap, lake, and seawater), and the results obtained were compared via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The amount of iron found was 207.8 ± 6.6 µg L-1 for tap water using voltammetry and 200.9 ± 1.5 µg L-1 with ICP-OES. For lake water, 171.7 ± 3.8 µg L-1, 169.8 ± 4.1 µg L-1, and 187.5 ± 5.7 µg L-1 were found using voltammetry in the lab both on-site and using ICP-OES, respectively. The results obtained demonstrate the excellent applicability of the proposed on-site voltammetric procedure for the determination of iron and its speciation in water.

5.
Foods ; 12(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37238856

RESUMEN

Background: According to recent studies, tens of millions of tons of fruit are wasted each year in Europe in primary production and home/service consumption. Among fruits, berries are most critical because they have a shorter shelf life and a softer, more delicate, and often edible skin. Curcumin is a natural polyphenolic compound extracted from the spice turmeric (Curcuma longa L.) which exhibits antioxidant, photophysical, and antimicrobial properties that can be further enhanced by photodynamic inactivation of pathogens when irradiated with blue or ultraviolet light. Materials and methods: Multiple experiments were performed in which berry samples were sprayed with a complex of ß-cyclodextrin containing 0.5 or 1 mg/mL of curcumin. Photodynamic inactivation was induced by irradiation with blue LED light. Antimicrobial effectiveness was assessed with microbiological assays. The expected effects of oxidation, curcumin solution deterioration, and alteration of the volatile compounds were investigated as well. Results: The treatment with photoactivated curcumin solutions reduced the bacterial load (3.1 vs. 2.5 colony forming units/mL (UFC/ml) in the control and treated groups; p-value = 0.01), without altering the fruit organoleptic and antioxidant properties. Conclusions: The explored method is a promising approach to extend berries' shelf life in an easy and green way. However, further investigations of the preservation and general properties of treated berries are still needed.

6.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077413

RESUMEN

The alteration of iron homeostasis related to the aging process is responsible for increased iron levels, potentially leading to oxidative cellular damage. Iron is modulated in the Central Nervous System in a very sensitive manner and an abnormal accumulation of iron in the brain has been proposed as a biomarker of neurodegeneration. However, contrasting results have been presented regarding brain iron accumulation and the potential link with other factors during aging and neurodegeneration. Such uncertainties partly depend on the fact that different techniques can be used to estimate the distribution of iron in the brain, e.g., indirect (e.g., MRI) or direct (post-mortem estimation) approaches. Furthermore, recent evidence suggests that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their anatomical location. This review aims to collect the available data on the association between iron concentration in the brain and aging, shedding light on potential mechanisms that may be helpful in the detection of physiological neurodegeneration processes and neurodegenerative diseases such as Alzheimer's disease.


Asunto(s)
Encéfalo , Enfermedades Neurodegenerativas , Humanos , Hierro , Quelantes del Hierro
7.
Tomography ; 8(4): 2093-2106, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36006074

RESUMEN

Previous studies demonstrated sex-related differences in several areas of the human brain, including patterns of brain activation in males and females when observing their own bodies and faces (versus other bodies/faces or morphed versions of themselves), but a complex paradigm touching multiple aspects of embodied self-identity is still lacking. We enrolled 24 healthy individuals (12 M, 12 F) in 3 different fMRI experiments: the vision of prototypical body silhouettes, the vision of static images of the face of the participants morphed with prototypical male and female faces, the vision of short videos showing the dynamic transformation of the morphing. We found differential sexual activations in areas linked to self-identity and to the ability to attribute mental states: In Experiment 1, the male group activated more the bilateral thalamus when looking at sex congruent body images, while the female group activated more the middle and inferior temporal gyrus. In Experiment 2, the male group activated more the supplementary motor area when looking at their faces; the female group activated more the dorsomedial prefrontal cortex (dmPFC). In Experiment 3, the female group activated more the dmPFC when observing either the feminization or the masculinization of their face. The defeminization produced more activations in females in the left superior parietal lobule and middle occipital gyrus. The performance of all classifiers built using single ROIs exceeded chance level, reaching an area under the ROC curves > 0.85 in some cases (notably, for Experiment 2 using the V1 ROI). The results of the fMRI tasks showed good agreement with previously published studies, even if our sample size was small. Therefore, our functional MRI protocol showed significantly different patterns of activation in males and females, but further research is needed both to investigate the gender-related differences in activation when observing a morphing of their face/body, and to validate our paradigm using a larger sample.


Asunto(s)
Mapeo Encefálico , Feminización , Imagen Corporal , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
8.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269742

RESUMEN

In the search for non-chemical and green methods to counteract the bacterial contamination of foods, the use of natural substances with antimicrobial properties and light irradiation at proper light waves has been extensively investigated. In particular, the combination of both techniques, called photodynamic inactivation (PDI), is based on the fact that some natural substances act as photosensitizers, i.e., produce bioactive effects under irradiation. Notably, curcumin is a potent natural antibacterial and effective photosensitizer that is able to induce photodynamic activation in the visible light range (specifically for blue light). Some practical applications have been investigated with particular reference to food preservation from bacterial contaminants.


Asunto(s)
Curcumina , Fotoquimioterapia , Antibacterianos/farmacología , Bacterias , Curcumina/farmacología , Conservación de Alimentos/métodos , Luz , Fármacos Fotosensibilizantes/farmacología
9.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361743

RESUMEN

While investigating the possible synergistic effect of the conventional anticancer therapies, which, taken individually, are often ineffective against critical tumors, such as central nervous system (CNS) ones, the design of a theranostic nanovector able to carry and deliver chemotherapy drugs and magnetic hyperthermic agents to the target radiosensitizers (oxygen) was pursued. Alongside the original formulation of polymeric biodegradable oxygen-loaded nanostructures, their properties were fine-tuned to optimize their ability to conjugate therapeutic doses of drugs (doxorubicin) or antitumoral natural substances (curcumin). Oxygen-loaded nanostructures (diameter = 251 ± 13 nm, ζ potential = -29 ± 5 mV) were finally decorated with superparamagnetic iron oxide nanoparticles (SPIONs, diameter = 18 ± 3 nm, ζ potential = 14 ± 4 mV), producing stable, effective and non-agglomerating magnetic nanovectors (diameter = 279 ± 17 nm, ζ potential = -18 ± 7 mV), which could potentially target the tumoral tissues under magnetic driving and are monitorable either by US or MRI imaging.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Quitosano/química , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Nanomedicina Teranóstica/métodos , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Medios de Contraste/síntesis química , Medios de Contraste/farmacología , Curcumina/química , Curcumina/farmacología , Sulfato de Dextran/química , Doxorrubicina/química , Doxorrubicina/farmacología , Composición de Medicamentos/métodos , Humanos , Cinética , Nanopartículas de Magnetita/ultraestructura , Oxígeno/química , Oxígeno/farmacología , Fármacos Sensibilizantes a Radiaciones/síntesis química
10.
Radiat Oncol ; 16(1): 85, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952288

RESUMEN

BACKGROUND: the aim of this study is to perform an external validation for the Candiolo nomogram, a predictive algorithm of biochemical and clinical recurrences in prostate cancer patients treated by radical Radiotherapy, published in 2016 on the journal "Radiation Oncology". METHODS: 561 patients, treated by Radiotherapy with curative intent between 2003 and 2012, were classified according to the five risk-classes of the Candiolo nomogram and the three risk-classes of the D'Amico classification for comparison. Patients were treated with a mean prostatic dose of 77.7 Gy and a combined treatment with Androgen-Deprivation-Therapy in 76% of cases. The end-points of the study were biochemical-progression-free-survival (bPFS) and clinical-Progression-Free-Survival (cPFS). With a median follow-up of 50 months, 56 patients (10%) had a biochemical relapse, and 30 patients (5.4%) a clinical progression. The cases were divided according to D'Amico in low-risk 21%, intermediate 40%, high-risk 39%; according to Candiolo very-low-risk 24%, low 37%, intermediate 24%, high 10%, very-high-risk 5%. Statistically, the Kaplan-Meier survival curves were processed and compared using Log-Rank tests and Harrell-C concordance index. RESULTS: The 5-year bPFS for the Candiolo risk-classes range between 98 and 38%, and the 5-year cPFS between 98 and 50% for very-low and very-high-risk, respectively. The Candiolo nomogram is highly significant for the stratification of both bPFS and cPFS (P < 0.0001), as well as the D'Amico classification (P = 0.004 and P = 0.001, respectively). For the Candiolo nomogram, the C indexes for bPFS and cPFS are 75 and 80%, respectively, while for D'Amico classification they are 64 and 69%, respectively. The Candiolo nomogram can identify a greater number of patients with low and very-low-risk prostate cancer (61% versus 21% according to D'Amico) and it better picks out patients with high and very-high-risk of recurrence, equal to only 15% of the total cases but subject to 48% (27/56) of biochemical relapses and 63% (19/30) of clinical progressions. CONCLUSIONS: the external validation of the Candiolo nomogram was overall successful with C indexes approximately 10% higher than the D'Amico control classification for bPFS and cPFS. Therefore, its clinical use is justified in prostate cancer patients before radical Radiotherapy. Trial registration Retrospectively registered.


Asunto(s)
Algoritmos , Recurrencia Local de Neoplasia/patología , Nomogramas , Neoplasias de la Próstata/patología , Radioterapia de Intensidad Modulada/mortalidad , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/radioterapia , Órganos en Riesgo/efectos de la radiación , Pronóstico , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Medición de Riesgo , Tasa de Supervivencia
11.
Int J Mol Sci ; 22(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923052

RESUMEN

Proper functioning of all organs, including the brain, requires iron. It is present in different forms in biological fluids, and alterations in its distribution can induce oxidative stress and neurodegeneration. However, the clinical parameters normally used for monitoring iron concentration in biological fluids (i.e., serum and cerebrospinal fluid) can hardly detect the quantity of circulating iron, while indirect measurements, e.g., magnetic resonance imaging, require further validation. This review summarizes the mechanisms involved in brain iron metabolism, homeostasis, and iron imbalance caused by alterations detectable by standard and non-standard indicators of iron status. These indicators for iron transport, storage, and metabolism can help to understand which biomarkers can better detect iron imbalances responsible for neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Biomarcadores/sangre , Encéfalo/metabolismo , Ferroptosis/fisiología , Hierro/metabolismo , Enfermedad de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquídeo , Encéfalo/patología , Ceruloplasmina/deficiencia , Ceruloplasmina/metabolismo , Ferritinas/sangre , Ferritinas/líquido cefalorraquídeo , Ferritinas/metabolismo , Humanos , Hierro/sangre , Hierro/líquido cefalorraquídeo , Trastornos del Metabolismo del Hierro/metabolismo , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo/fisiología , Transferrina/líquido cefalorraquídeo , Transferrina/metabolismo
12.
Front Aging Neurosci ; 13: 607858, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692679

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, characterized by a complex etiology that makes therapeutic strategies still not effective. A true understanding of key pathological mechanisms and new biomarkers are needed, to identify alternative disease-modifying therapies counteracting the disease progression. Iron is an essential element for brain metabolism and its imbalance is implicated in neurodegeneration, due to its potential neurotoxic effect. However, the role of iron in different stages of dementia is not clearly established. This study aimed to investigate the potential impact of iron both in cerebrospinal fluid (CSF) and in serum to improve early diagnosis and the related therapeutic possibility. In addition to standard clinical method to detect iron in serum, a precise quantification of total iron in CSF was performed using graphite-furnace atomic absorption spectrometry in patients affected by AD, mild cognitive impairment, frontotemporal dementia, and non-demented neurological controls. The application of machine learning techniques, such as clustering analysis and multiclassification algorithms, showed a new potential stratification of patients exploiting iron-related data. The results support the involvement of iron dysregulation and its potential interaction with biomarkers (Tau protein and Amyloid-beta) in the pathophysiology and progression of dementia.

13.
Front Pharmacol ; 10: 1001, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572183

RESUMEN

Tumor oxygenation is a critical issue for enhancing radiotherapy (RT) effectiveness. Alternating RT with hyperthermia improves tumor radiosensitivity by inducing a massive vasodilation of the neoangiogenic vasculature provided the whole tumor is properly heated. The aim of this work was to develop superparamagnetic oxygen-loaded nanobubbles (MOLNBs) as innovative theranostic hyperthermic agents to potentiate tumor oxygenation by direct intracellular oxygen administration. Magnetic oxygen-loaded nanobubbles were obtained by functionalizing dextran-shelled and perfluoropentane-cored nanobubbles with superparamagnetic iron oxide nanoparticles. Magnetic oxygen-loaded nanobubbles with sizes of about 380 nm were manufactured, and they were able to store oxygen and in vitro release it with prolonged kinetics. In vitro investigation showed that MOLNBs can increase tissue temperature when exposed to radiofrequency magnetic fields. Moreover, they are easily internalized by tumor cells, herein releasing oxygen with a sustained kinetics. In conclusion, MOLNBs can be considered a multimodal theranostic platform since, beyond their nature of contrast agent for magnetic resonance imaging due to magnetic characteristics, they showed echogenic properties and can be visualized using medical ultrasound.

14.
Materials (Basel) ; 12(3)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717431

RESUMEN

Magnetic Nanoparticles (MNPs) are of great interest in biomedicine, due to their wide range of applications. During recent years, one of the most challenging goals is the development of new strategies to finely tune the unique properties of MNPs, in order to improve their effectiveness in the biomedical field. This review provides an up-to-date overview of the methods of synthesis and functionalization of MNPs focusing on Iron Oxide Nanoparticles (IONPs). Firstly, synthesis strategies for fabricating IONPs of different composition, sizes, shapes, and structures are outlined. We describe the close link between physicochemical properties and magnetic characterization, essential to developing innovative and powerful magnetic-driven nanocarriers. In conclusion, we provide a complete background of IONPs functionalization, safety, and applications for the treatment of Central Nervous System disorders.

15.
Mol Imaging ; 17: 1536012118778216, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30213222

RESUMEN

Ultrasound Contrast Agents (UCAs) consisting of gas-filled-coated Microbubbles (MBs) with diameters between 1 and 10 µm have been used for a number of decades in diagnostic imaging. In recent years, submicron contrast agents have proven to be a viable alternative to MBs for ultrasound (US)-based applications for their capability to extravasate and accumulate in the tumor tissue via the enhanced permeability and retention effect. After a short overview of the more recent approaches to ultrasound-mediated imaging and therapeutics at the nanoscale, phase-change contrast agents (PCCAs), which can be phase-transitioned into highly echogenic MBs by means of US, are here presented. The phenomenon of acoustic droplet vaporization (ADV) to produce bubbles is widely investigated for both imaging and therapeutic applications to develop promising theranostic platforms.


Asunto(s)
Nanotecnología , Nanomedicina Teranóstica , Ultrasonografía , Acústica , Humanos , Microburbujas , Volatilización
16.
Pharm Res ; 35(4): 75, 2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-29484487

RESUMEN

PURPOSE: Chitosan-shelled/decafluoropentane-cored oxygen-loaded nanodroplets (OLN) are a new class of nanodevices to effectively deliver anti-cancer drugs to tumoral cells. This study investigated their antitumoral effects 'per se', using a mathematical model validated on experimental data. METHODS: OLN were prepared and characterized either in vitro or in vivo. TUBO cells, established from a lobular carcinoma of a BALB-neuT mouse, were investigated following 48 h of incubation in the absence/presence of different concentrations of OLN. OLN internalization, cell viability, necrosis, apoptosis, cell cycle and reactive oxygen species (ROS) production were checked as described in the Method section. In vivo tumor growth was evaluated after subcutaneous transplant in BALB/c mice of TUBO cells either without treatment or after 24 h incubation with 10% v/v OLN. RESULTS: OLN showed sizes of about 350 nm and a positive surface charge (45 mV). Dose-dependent TUBO cell death through ROS-triggered apoptosis following OLN internalization was detected. A mathematical model predicting the effects of OLN uptake was validated on both in vitro and in vivo results. CONCLUSIONS: Due to their intrinsic toxicity OLN might be considered an adjuvant tool suitable to deliver their therapeutic cargo intracellularly and may be proposed as promising combined delivery system.


Asunto(s)
Antineoplásicos/administración & dosificación , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Animales , Carcinoma de Mama in situ/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral/trasplante , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Simulación por Computador , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Fluorocarburos/química , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Oxígeno/química
17.
Curr Pharm Des ; 24(15): 1717-1726, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29318963

RESUMEN

BACKGROUND: Genetic alterations cause Hereditary Diseases (HDs) with a wide range of incidences. Some, like cystic fibrosis, occur frequently (1/1,000 newborns), whilst others, such as Pompe disease and other metabolic disorders are very rare (1/100,000 newborns). They are well under the threshold of 1/3,000, denoted by the European Community as Rare Diseases (RDs). Genetic alterations are also associated with multifactorial disorders like diabetes, and underline both somatic and germline mutations in cancer. Nowadays, thanks to the interventions of the European Union and the American National Health Institute as well as others, Hds are under an international lense, which has stimulated discussions and research targeting gene identification, prenatal diagnosis and care optimization leading to the development of new treatment options. Nanomedicine is paving the way toward some highly appealing clinical and research avenues in HDs. Nanotechnologies lend themselves to many aspects in human healthcare, such as in vitro diagnostics (nanobiosensors and nanoplatforms), drug delivery (nanovectors), drug monitoring (nanosensors) and artificial organs to study the genome variant meaning (nanostructures). METHODS AND RESULTS: With a significant reduction in costs and simplified healthcare delivery, nanodiagnostics can potentially provide the tools to diagnose diseases at an early stage with precision. In vitro nanodiagnostics are already diagnosing RDs, with many nanodevices having been successfully introduced over the last few decades. Nanovectors represent an emerging approach in drug delivery and treatment for several diseases such as cancers, infectious diseases, cardiovascular disorders and neurological pathologies. Artificial tissues have valuable implications in replacing compromised organs, thus offering unique opportunities to explore pathogenic mechanisms as well as new drug targets in a personalized context. CONCLUSION: This article outlines and discusses the recent progress in nanotechnology and its potential applications in HDs. It is a pivotal field for research and innovation in healthcare, with emphasis on diagnostics, disease monitoring, biomarker assaying and drug delivery. We underlined the nanomethod's capacity to identify genetic alterations and the follow up of important aspects of the disease course, including therapies. We extensively described the new field of nanodelivery for experimental drugs, focusing on new genetic therapies and their implications in hereditary disorders. We also detailed innovative tools as artificial tissues based on nanomatrices and their use to identify or study genetic alterations.


Asunto(s)
Sistemas de Liberación de Medicamentos , Enfermedades Genéticas Congénitas , Nanomedicina , Animales , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/tratamiento farmacológico , Enfermedades Genéticas Congénitas/genética , Humanos , Nanotecnología
18.
Molecules ; 23(1)2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29267188

RESUMEN

One of the most challenging goals in pharmacological research is overcoming the Blood Brain Barrier (BBB) to deliver drugs to the Central Nervous System (CNS). The use of physical means, such as steady and alternating magnetic fields to drive nanocarriers with proper magnetic characteristics may prove to be a useful strategy. The present review aims at providing an up-to-date picture of the applications of magnetic-driven nanotheranostics agents to the CNS. Although well consolidated on physical ground, some of the techniques described herein are still under investigation on in vitro or in silico models, while others have already entered in-or are close to-clinical validation. The review provides a concise overview of the physical principles underlying the behavior of magnetic nanoparticles (MNPs) interacting with an external magnetic field. Thereafter we describe the physiological pathways by which a substance can reach the brain from the bloodstream and then we focus on those MNP applications that aim at a nondestructive crossing of the BBB such as static magnetic fields to facilitate the passage of drugs and alternating magnetic fields to increment BBB permeability by magnetic heating. In conclusion, we briefly cite the most notable biomedical applications of MNPs and some relevant remarks about their safety and potential toxicity.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Nanopartículas de Magnetita/efectos adversos , Nanopartículas de Magnetita/química , Animales , Transporte Biológico , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Campos Magnéticos , Modelos Biológicos , Tamaño de la Partícula , Permeabilidad , Propiedades de Superficie
19.
Int J Pharm ; 523(1): 176-188, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28330735

RESUMEN

Vancomycin (Vm) currently represents the gold standard against methicillin-resistant Staphylococcus aureus (MRSA) infections. However, it is associated with low oral bioavailability, formulation stability issues, and severe side effects upon systemic administration. These drawbacks could be overcome by Vm topical administration if properly encapsulated in a nanocarrier. Intriguingly, nanobubbles (NBs) are responsive to physical external stimuli such as ultrasound (US), promoting drug delivery. In this work, perfluoropentane (PFP)-cored NBs were loaded with Vm by coupling to the outer dextran sulfate shell. Vm-loaded NBs (VmLNBs) displayed ∼300nm sizes, anionic surfaces and good drug encapsulation efficiency. In vitro, VmLNBs showed prolonged drug release kinetics, not accompanied by cytotoxicity on human keratinocytes. Interestingly, VmLNBs were generally more effective than Vm alone in MRSA killing, with VmLNB antibacterial activity being more sustained over time as a result of prolonged drug release profile. Besides, VmLNBs were not internalized by staphylococci, opposite to Vm solution. Further US association promoted drug delivery from VmLNBs through an in vitro model of porcine skin. Taken together, these results support the hypothesis that proper Vm encapsulation in US-responsive NBs might be a promising strategy for the topical treatment of MRSA wound infections.


Asunto(s)
Antibacterianos , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Nanoestructuras , Vancomicina , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/efectos de la radiación , Sulfato de Dextran/química , Composición de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Fluorocarburos/química , Humanos , Técnicas In Vitro , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Microscopía Electrónica de Transmisión , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Nanoestructuras/ultraestructura , Piel/metabolismo , Absorción Cutánea , Porcinos , Ondas Ultrasónicas , Vancomicina/administración & dosificación , Vancomicina/química , Vancomicina/efectos de la radiación
20.
Cancer Res ; 76(17): 4941-7, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27587651

RESUMEN

Recurrences of prostate cancer affect approximately one quarter of patients who have undergone radical prostatectomy. Reliable factors to predict time to relapse in specific individuals are lacking. Here, we present a mathematical model that evaluates a biologically sensible parameter (α) that can be estimated by the available follow-up data, in particular by the PSA series. This parameter is robust and highly predictive for the time to relapse, also after administration of adjuvant androgen deprivation therapies. We present a practical computational method based on the collection of only four postsurgical PSA values. This study offers a simple tool to predict prostate cancer relapse. Cancer Res; 76(17); 4941-7. ©2016 AACR.


Asunto(s)
Modelos Teóricos , Recurrencia Local de Neoplasia/sangre , Neoplasias de la Próstata/patología , Anciano , Antagonistas de Andrógenos/uso terapéutico , Quimioterapia Adyuvante , Humanos , Masculino , Persona de Mediana Edad , Antígeno Prostático Específico/sangre , Prostatectomía , Neoplasias de la Próstata/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA