Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 15(1): 407, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195629

RESUMEN

T-cell cytotoxic function relies on the cooperation between the highly specific but poorly adhesive T-cell receptor (TCR) and the integrin LFA-1. How LFA-1-mediated adhesion may scale with TCR stimulation strength is ill-defined. Here, we show that LFA-1 conformation activation scales with TCR stimulation to calibrate human T-cell cytotoxicity. Super-resolution microscopy analysis reveals that >1000 LFA-1 nanoclusters provide a discretized platform at the immunological synapse to translate TCR engagement and density of the LFA-1 ligand ICAM-1 into graded adhesion. Indeed, the number of high-affinity conformation LFA-1 nanoclusters increases as a function of TCR triggering strength. Blockade of LFA-1 conformational activation impairs adhesion to target cells and killing. However, it occurs at a lower TCR stimulation threshold than lytic granule exocytosis implying that it licenses, rather than directly controls, the killing decision. We conclude that the organization of LFA-1 into nanoclusters provides a calibrated system to adjust T-cell killing to the antigen stimulation strength.


Asunto(s)
Antineoplásicos , Linfocitos T , Humanos , Gránulos Citoplasmáticos , Antígeno-1 Asociado a Función de Linfocito , Receptores de Antígenos de Linfocitos T , Antígeno CD11a/metabolismo
2.
Front Immunol ; 14: 1231916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675109

RESUMEN

Introduction: Natural Killer (NK) cells hold the potential to shift cell therapy from a complex autologous option to a universal off-the-shelf one. Although NK cells have demonstrated efficacy and safety in the treatment of leukemia, the limited efficacy of NK cell-based immunotherapies against solid tumors still represents a major hurdle. In the immunosuppressive tumor microenvironment (TME), inhibitory interactions between cancer and immune cells impair antitumoral immunity. KLRC1 gene encodes the NK cell inhibitory receptor NKG2A, which is a potent NK cell immune checkpoint. NKG2A specifically binds HLA-E, a non-classical HLA class I molecule frequently overexpressed in tumors, leading to the transmission of inhibitory signals that strongly impair NK cell function. Methods: To restore NK cell cytotoxicity against HLA-E+ tumors, we have targeted the NKG2A/HLA-E immune checkpoint by using a CRISPR-mediated KLRC1 gene editing. Results: KLRC1 knockout resulted in a reduction of 81% of NKG2A+ cell frequency in ex vivo expanded human NK cells post-cell sorting. In vitro, the overexpression of HLA-E by tumor cells significantly inhibited wild-type (WT) NK cell cytotoxicity with p-values ranging from 0.0071 to 0.0473 depending on tumor cell lines. In contrast, KLRC1 KO NK cells exhibited significantly higher cytotoxicity when compared to WT NK cells against four different HLA-E+ solid tumor cell lines, with p-values ranging from<0.0001 to 0.0154. Interestingly, a proportion of 43.5% to 60.2% of NKG2A- NK cells within the edited NK cell population was sufficient to reverse at its maximum the HLA-E-mediated inhibition of NK cell cytotoxicity. The expression of the activating receptor NKG2C was increased in KLRC1 KO NK cells and contributed to the improved NK cell cytotoxicity against HLA-E+ tumors. In vivo, the adoptive transfer of human KLRC1 KO NK cells significantly delayed tumor progression and increased survival in a xenogeneic mouse model of HLA-E+ metastatic breast cancer, as compared to WT NK cells (p = 0.0015). Conclusions: Our results demonstrate that KLRC1 knockout is an effective strategy to improve NK cell antitumor activity against HLA-E+ tumors and could be applied in the development of NK cell therapy for solid tumors.


Asunto(s)
Células Asesinas Naturales , Leucemia , Humanos , Animales , Ratones , Receptores de Células Asesinas Naturales , Transporte de Proteínas , Microambiente Tumoral , Antígenos HLA-E
3.
Int Immunol ; 31(4): 239-250, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30778577

RESUMEN

The intrinsic immunosuppressive properties of regulatory T (Treg) cells can be harnessed for therapeutic approaches aiming at down-modulating harmful immune reactions. In this context, expanded type 1 Treg cells (Tr1 cells) specific for ovalbumin (ova-Tr1 cells) have been tested for clinical efficacy in the treatment of autoimmune disorders such as refractory Crohn's disease (CD). The clinical use of these therapeutic products warrants exploration of their mechanism of action. Here, we identified a relationship between the CD activity index and the expression of lytic molecules by the ova-Tr1 cells administered in the previously reported First-in-Man study [Crohn's And Treg cells Study 1 (CATS1) study]. Accordingly, ova-Tr1 cells were found to carry granules containing high levels of lytic molecules, including multiple granzymes and granulysin. These cells displayed a T-cell receptor (TCR)-independent cytotoxic activity, which was preferentially directed toward myeloid cell lines and monocyte-derived dendritic cells. Upon contact with myeloid cells, ova-Tr1 cells induced their apoptosis via a perforin-independent and a granulysin/granzyme-dependent mechanism. As compared to CD8+ cytotoxic T cells, ova-Tr1 cells required more time to lyse target cells and displayed a more gradual lytic activity over time. Notably, this activity was sustained over days resulting in the control of myeloid cell populations at a relatively low ratio. Our study reveals that ova-Tr1 cells are endowed with a sustained cytotoxic activity that relies on a unique combination of granulysin and granzymes and that preferentially eliminates myeloid target cells in a TCR-independent manner.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos T CD8-positivos/inmunología , Granzimas/metabolismo , Células Mieloides/inmunología , Linfocitos T Reguladores/inmunología , Antígenos/inmunología , Células Cultivadas , Citotoxicidad Inmunológica , Humanos , Activación de Linfocitos , Ovalbúmina/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T , Células THP-1 , Células U937
4.
Cell Rep ; 22(4): 979-991, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29386139

RESUMEN

T lymphocyte cytotoxicity relies on a synaptic ring of lymphocyte function-associated antigen 1 (LFA-1), which permits polarized delivery of lytic granules. How LFA-1 organization is controlled by underlying actin cytoskeleton dynamics is poorly understood. Here, we explored the contribution of the actin cytoskeleton regulator WASP to the topography of LFA-1 using a combination of microscopy modalities. We uncover that the reduced cytotoxicity of Wiskott-Aldrich syndrome patient-derived CD8+ T lymphocytes lacking WASP is associated with reduced LFA-1 activation, unstable synapse, and delayed lethal hit. At the nanometric scale, WASP constrains high-affinity LFA-1 into dense nanoclusters located in actin meshwork interstices. At the cellular scale, WASP is required for the assembly of a radial belt composed of hundreds of LFA-1 nanoclusters and for lytic granule docking within this belt. Our study unravels the nanoscale topography of LFA-1 at the lytic synapse and identifies WASP as a molecule controlling individual LFA-1 cluster density and LFA-1 nanocluster belt integrity.


Asunto(s)
Antígeno-1 Asociado a Función de Linfocito/genética , Sinapsis/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/genética , Animales , Humanos , Antígeno-1 Asociado a Función de Linfocito/metabolismo
5.
Cell Rep ; 11(9): 1474-85, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26027932

RESUMEN

The killing of antigen-bearing cells by clonal populations of cytotoxic T lymphocytes (CTLs) is thought to be a rapid phenomenon executed uniformly by individual CTLs. We combined bulk and single-CTL killing assays over a prolonged time period to provide the killing statistics of clonal human CTLs against an excess of target cells. Our data reveal efficiency in sustained killing at the population level, which relied on a highly heterogeneous multiple killing performance at the individual level. Although intraclonal functional heterogeneity was a stable trait in clonal populations, it was reset in the progeny of individual CTLs. In-depth mathematical analysis of individual CTL killing data revealed a substantial proportion of high-rate killer CTLs with burst killing activity. Importantly, such activity was delayed and required activation with strong antigenic stimulation. Our study implies that functional heterogeneity allows CTL populations to calibrate prolonged cytotoxic activity to the size of target cell populations.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Linfocitos T Citotóxicos/inmunología , Citometría de Flujo , Humanos , Microscopía Confocal , Modelos Teóricos
6.
Front Immunol ; 6: 47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25709608

RESUMEN

Over the last decades, research dedicated to the molecular and cellular mechanisms underlying primary immunodeficiencies (PID) has helped to understand the etiology of many of these diseases and to develop novel therapeutic approaches. Beyond these aspects, PID are also studied because they offer invaluable natural genetic tools to dissect the human immune system. In this review, we highlight the research that has focused over the last 20 years on T lymphocytes from Wiskott-Aldrich syndrome (WAS) patients. WAS T lymphocytes are defective for the WAS protein (WASP), a regulator of actin cytoskeleton remodeling. Therefore, study of WAS T lymphocytes has helped to grasp that many steps of T lymphocyte activation and function depend on the crosstalk between membrane receptors and the actin cytoskeleton. These steps include motility, immunological synapse assembly, and signaling, as well as the implementation of helper, regulatory, or cytotoxic effector functions. The recent concept that WASP also works as a regulator of transcription within the nucleus is an illustration of the complexity of signal integration in T lymphocytes. Finally, this review will discuss how further study of WAS may contribute to solve novel challenges of T lymphocyte biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA