Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Parasitol Res ; 123(5): 202, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703234

RESUMEN

Theileria orientalis, the causal agent of oriental theileriosis, is known to cause mild disease in cattle and buffalo across the world. Recently, different genotypes of T. orientalis have emerged as pathogenic, causing high reported morbidity in cattle. This study focuses on investigating three suspected outbreaks of oriental theileriosis that resulted in fatalities among crossbred and indigenous bulls in Karnataka, India. Examination of blood smears revealed the presence of T. orientalis piroplasms within erythrocytes. The genetic characterization of T. orientalis was conducted by targeting specific markers, including the mpsp gene, p23 gene, and ribosomal DNA markers (18S rRNA gene, ITS-1, and ITS-2). Analysis based on the 18S rRNA gene unveiled the presence of both Type A and Type E genotypes of T. orientalis in the outbreaks. The mpsp gene-based analysis identified genotype 7 of T. orientalis in crossbred cows, whereas genotype 1 (Chitose B) was found to be present in indigenous bulls. Haplotype network analysis based on the mpsp gene revealed the presence of 39 distinct haplotypes within the 12 defined genotypes of T. orientalis with a high haplotype diversity of 0.9545 ± 0.017. Hematological and biochemical analysis revealed a decrease in calcium, hemoglobin levels, red blood cell counts, and phosphorus. This study constitutes the initial documentation of a clinical outbreak of oriental theileriosis in indigenous bulls with genotype 1 (Chitose 1B). Substantial epidemiological investigations are imperative to gain a comprehensive understanding of the geographical distribution of distinct genotypes and the diverse clinical manifestations of the disease across various hosts.


Asunto(s)
Brotes de Enfermedades , Variación Genética , Genotipo , ARN Ribosómico 18S , Theileria , Theileriosis , Animales , Theileria/genética , Theileria/clasificación , Bovinos , Theileriosis/epidemiología , Theileriosis/parasitología , India/epidemiología , Brotes de Enfermedades/veterinaria , ARN Ribosómico 18S/genética , Masculino , ADN Protozoario/genética , Filogenia , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/epidemiología , Análisis de Secuencia de ADN , Proteínas Protozoarias/genética , ADN Espaciador Ribosómico/genética , ADN Ribosómico/genética , ADN Ribosómico/química
2.
Virulence ; 14(1): 2190647, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36919498

RESUMEN

Lumpy skin disease (LSD) was reported for the first time in India in 2019 and since then, it has become endemic. Since a homologous (LSD-virus based) vaccine was not available in the country, goatpox virus (GPV)-based heterologous vaccine was authorized for mass immunization to induce protection against LSD in cattle. This study describes the evaluation of safety, immunogenicity and efficacy of a new live-attenuated LSD vaccine developed by using an Indian field strain, isolated in 2019 from cattle. The virus was attenuated by continuous passage (P = 50) in Vero cells. The vaccine (50th LSDV passage in Vero cells, named as Lumpi-ProVacInd) did not induce any local or systemic reaction upon its experimental inoculation in calves (n = 10). At day 30 post-vaccination (pv), the vaccinated animals were shown to develop antibody- and cell-mediated immune responses and exhibited complete protection upon virulent LSDV challenge. A minimum Neethling response (0.018% animals; 5 out of 26,940 animals) of the vaccine was observed in the field trials conducted in 26,940 animals. There was no significant reduction in the milk yield in lactating animals (n = 10108), besides there was no abortion or any other reproductive disorder in the pregnant animals (n = 2889). Sero-conversion was observed in 85.18% animals in the field by day 30 pv.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Vacunas Virales , Animales , Bovinos , Femenino , Chlorocebus aethiops , Dermatosis Nodular Contagiosa/prevención & control , Dermatosis Nodular Contagiosa/epidemiología , Virus de la Dermatosis Nodular Contagiosa/genética , Vacunas Atenuadas/efectos adversos , Células Vero , Vacunas Virales/administración & dosificación
3.
Prev Vet Med ; 212: 105835, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642015

RESUMEN

Zoonotic diseases have huge livestock and public health burden worldwide, including India. Prioritizing zoonotic diseases is one of the important tasks under 'One Health' as it facilitates effective policy making, proper allocation of resources and promotion of multisectoral collaboration. Although some efforts have been made to prioritizing zoonotic diseases at national level in India, it is important to identify priority diseases in regional settings due to wide variation in climate and demography of different states. Therefore, the present study aims to prioritize zoonotic diseases for the state of Haryana (India). One Health Zoonotic Disease Prioritization (OHZDP) tool was used in this study to prioritize zoonotic diseases. Based on literature review of the past 23 years (2000-2022) on prevalence, morbidity, and mortality of zoonotic diseases, twenty-three high-scoring zoonotic diseases in Haryana and neighboring states of India were initially shortlisted for prioritization. A three-day participatory workshop was conducted involving 17 experts representing the Health, Animal Husbandry and Wildlife departments of Haryana. The Analytical Hierarchy Process (AHP) was used to rank the criteria, which were used to score the selected diseases using the decision tree analysis. The participants selected the following 7 criteria along with their relative weights to score the diseases: (1) Severity of disease in humans, (2) Severity of disease in animals, (3) Presence of disease in the region, (4) Transmission and outbreak potential, (5) Socio-economic impact, (6) Availability of interventions, and (7) Existing inter-sectoral collaboration for surveillance and reporting. The top scoring eight diseases selected as priority zoonotic diseases for Haryana were rabies, Japanese encephalitis, bovine tuberculosis, leptospirosis, avian influenza (H5N1), brucellosis, glanders and Influenza A (H1N1). Sensitivity analysis did not reveal any significant variation in prioritization results by varying criteria weights. This is the first systemic attempt to prioritize zoonotic diseases in the state and this will help in formulating effective monitoring, prevention, and control strategies for zoonotic diseases in the regional settings.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Humanos , Animales , Zoonosis/epidemiología , Zoonosis/prevención & control , Salud Pública/métodos , India/epidemiología
4.
Vaccines (Basel) ; 11(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679995

RESUMEN

Japanese encephalitis viruses (JEVs) are globally prevalent as deadly pathogens in humans and animals, including pig, horse and cattle. Japanese encephalitis (JE) still remains an important cause of epidemic encephalitis worldwide and exists in a zoonotic transmission cycle. Assam is one of the highly endemic states for JE in India. In the present study, to understand the epidemiological status of JE circulating in pigs and mosquito, particularly in Assam, India, molecular detection of JEV and the genome sequencing of JEV isolates from pigs and mosquitoes was conducted. The genome analysis of two JEV isolates from pigs and mosquitoes revealed 7 and 20 numbers of unique points of polymorphism of nucleotide during alignment of the sequences with other available sequences, respectively. Phylogenetic analysis revealed that the isolates of the present investigation belong to genotype III and are closely related with the strains of neighboring country China. This study highlights the transboundary nature of the JEV genotype III circulation, which maintained the same genotype through mosquito-swine transmission cycles.

5.
Antiviral Res ; 197: 105232, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968527

RESUMEN

We report the in vitro antiviral activity of DZNep (3-Deazaneplanocin A; an inhibitor of S-adenosylmethionine-dependent methyltransferase) against SARS-CoV-2, besides demonstrating its protective efficacy against lethal infection of infectious bronchitis virus (IBV, a member of the Coronaviridae family). DZNep treatment resulted in reduced synthesis of SARS-CoV-2 RNA and proteins without affecting other steps of viral life cycle. We demonstrated that deposition of N6-methyl adenosine (m6A) in SARS-CoV-2 RNA in the infected cells recruits heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), an RNA binding protein which serves as a m6A reader. DZNep inhibited the recruitment of hnRNPA1 at m6A-modified SARS-CoV-2 RNA which eventually suppressed the synthesis of the viral genome. In addition, m6A-marked RNA and hnRNPA1 interaction was also shown to regulate early translation to replication switch of SARS-CoV-2 genome. Furthermore, abrogation of methylation by DZNep also resulted in defective synthesis of the 5' cap of viral RNA, thereby resulting in its failure to interact with eIF4E (a cap-binding protein), eventually leading to a decreased synthesis of viral proteins. Most importantly, DZNep-resistant mutants could not be observed upon long-term sequential passage of SARS-CoV-2 in cell culture. In summary, we report the novel role of methylation in the life cycle of SARS-CoV-2 and propose that targeting the methylome using DZNep could be of significant therapeutic value against SARS-CoV-2 infection.


Asunto(s)
Adenosina/análogos & derivados , Genoma Viral/efectos de los fármacos , Metiltransferasas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Adenosina/farmacología , Animales , Embrión de Pollo , Chlorocebus aethiops , Secuenciación de Inmunoprecipitación de Cromatina , Metilación de ADN/efectos de los fármacos , Metilación de ADN/fisiología , Farmacorresistencia Viral/efectos de los fármacos , Genoma Viral/genética , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Dosificación Letal Mediana , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , ARN Viral/efectos de los fármacos , ARN Viral/metabolismo , Conejos , SARS-CoV-2/genética , Organismos Libres de Patógenos Específicos , Transcripción Genética/efectos de los fármacos , Células Vero
6.
Front Cell Infect Microbiol ; 11: 771524, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888260

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved to generate several antigenic variants. These variants have raised concerns whether pre-existing immunity to vaccination or prior infection would be able to protect against the newly emerging SARS-CoV-2 variants or not. We isolated SARS-CoV-2 from the coronavirus disease 2019 (COVID-19)-confirmed patients in the beginning of the first (April/May 2020) and second (April/May 2021) waves of COVID-19 in India (Hisar, Haryana). Upon complete nucleotide sequencing, the viruses were found to be genetically related with wild-type (WT) and Delta variants of SARS-CoV-2, respectively. The Delta variant of SARS-CoV-2 produced a rapid cytopathic effect (24-36 h as compared to 48-72 h in WT) and had bigger plaque size but a shorter life cycle (~6 h as compared to the ~8 h in WT). Furthermore, the Delta variant achieved peak viral titers within 24 h as compared to the 48 h in WT. These evidence suggested that the Delta variant replicates significantly faster than the WT SARS-CoV-2. The virus neutralization experiments indicated that antibodies elicited by vaccination are more efficacious in neutralizing the WT virus but significantly less potent against the Delta variant. Our findings have implications in devising suitable vaccination, diagnostic and therapeutic strategies, besides providing insights into understanding virus replication and transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Glicoproteína de la Espiga del Coronavirus
7.
Antiviral Res ; 189: 105056, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711336

RESUMEN

Emetine is a FDA-approved drug for the treatment of amebiasis. Previously we demonstrated the antiviral efficacy of emetine against some RNA and DNA viruses. In this study, we evaluated the in vitro antiviral efficacy of emetine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and found it to be a low nanomolar (nM) inhibitor. Interestingly, emetine exhibited protective efficacy against lethal challenge with infectious bronchitis virus (IBV; a chicken coronavirus) in the embryonated chicken egg infection model. Emetine treatment led to a decrease in viral RNA and protein synthesis without affecting other steps of viral life cycle such as attachment, entry and budding. In a chromatin immunoprecipitation (CHIP) assay, emetine was shown to disrupt the binding of SARS-CoV-2 mRNA with eIF4E (eukaryotic translation initiation factor 4E, a cellular cap-binding protein required for initiation of protein translation). Further, molecular docking and molecular dynamics simulation studies suggested that emetine may bind to the cap-binding pocket of eIF4E, in a similar conformation as m7-GTP binds. Additionally, SARS-CoV-2 was shown to exploit ERK/MNK1/eIF4E signalling pathway for its effective replication in the target cells. Collectively our results suggest that further detailed evaluation of emetine as a potential treatment for COVID-19 may be warranted.


Asunto(s)
Antivirales , Emetina , Virus de la Bronquitis Infecciosa/efectos de los fármacos , ARN Viral/metabolismo , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Embrión de Pollo , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Emetina/farmacología , Emetina/uso terapéutico , Factor 4E Eucariótico de Iniciación/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/metabolismo , Transducción de Señal , Células Vero
8.
Antiviral Res ; 181: 104870, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32707051

RESUMEN

We describe herein that Apigenin, which is a dietary flavonoid, exerts a strong in vitro and in ovo antiviral efficacy against buffalopox virus (BPXV). Apigenin treatment was shown to inhibit synthesis of viral DNA, mRNA and proteins, without affecting other steps of viral life cycle such as attachment, entry and budding. Although the major mode of antiviral action of Apigenin was shown to be mediated via targeting certain cellular factors, a modest inhibitory effect of Apigenin was also observed directly on viral polymerase. We also evaluated the selection of drug-resistant virus variants under long-term selection pressure of Apigenin. Wherein Apigenin-resistant mutants were not observed up to ~ P20 (passage 20), a significant resistance was observed to the antiviral action of Apigenin at ~ P30. However, a high degree resistance could not be observed even up to P60. To the best of our knowledge, this is the first report describing in vitro and in ovo antiviral efficacy of Apigenin against poxvirus infection. The study also provides mechanistic insights on the antiviral activity of Apigenin and selection of potential Apigenin-resistant mutants upon long-term culture.


Asunto(s)
Antivirales/farmacología , Apigenina/farmacología , Farmacorresistencia Viral , Virus Vaccinia/efectos de los fármacos , Animales , Embrión de Pollo/virología , Pollos , Chlorocebus aethiops , ADN Viral/genética , ADN Polimerasa Dirigida por ADN , Humanos , Virus Vaccinia/enzimología , Células Vero , Replicación Viral/efectos de los fármacos
9.
J Vector Borne Dis ; 55(4): 291-296, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30997889

RESUMEN

BACKGROUND & OBJECTIVES: Assam is the most vulnerable state for Japanese encephalitis (JE) in India. The situation warrants characterization of epidemiological patterns of JE in vectors, pigs and human population. This investigation was aimed to determine the relative abundance of mosquito species and seroprevalence of JE in pigs in order to draw an epidemiological association with reported human JE cases in Assam. METHODS: Pig sera and mosquitoes from selected farms in Sivasagar and Kamrup districts of Assam were collected fortnightly for one year during June 2015-May 2016. Pig sera were tested for JE antibodies by haemagglutination and virus neurtralization tests. Mosquito species were identified microscopically following the taxonomic keys. The results were analyzed with data on confirmed human JE cases in the selected districts. RESULTS: Culex gelidus (26.07%) and Cx. tritaeniorhynchus (24.07%) were the most abundant species in collected mosquitoes (n = 997). A total of 22.99% of pigs (n = 335) were JEV seropositive and 45.65% of human acute encephalitis syndrome cases (n = 230) were positive for JE virus (JEV) infection. Relative mosquito abundance, pig positivity and human cases were highest during monsoon (June-September) and least during winter (December-February). Rise in mosquito population was observed during pre-monsoon season (March-May) and concurrently higher number of human cases and pig seropositivity were recorded. A good correlation was observed between mosquito number and JEV positivity in pigs/human, and between pigs and human cases (p < 0.05). Human population in Sivasagar was at higher risk for JE infection (OR: 6.46, p < 0.0001) than in Kamrup rural district. INTERPRETATION & CONCLUSION: This study indicates that a seasonal correlation exists between mosquito abundance and JEV seroconversion in pigs with concurrent human JEV outbreaks under field conditions in Sivasagar and Kamrup rural districts of Assam and that monitoring mosquito abundance/density and pig JEV seropositivity may help in predicting JEV outbreak in human population in the region.


Asunto(s)
Distribución Animal , Anticuerpos Antivirales/sangre , Culicidae/clasificación , Encefalitis Japonesa/epidemiología , Pruebas Serológicas/veterinaria , Porcinos/sangre , Animales , Culicidae/virología , Brotes de Enfermedades , Virus de la Encefalitis Japonesa (Especie) , Femenino , Humanos , India/epidemiología , Mosquitos Vectores/clasificación , Mosquitos Vectores/virología , Factores de Riesgo , Estaciones del Año , Estudios Seroepidemiológicos , Porcinos/virología
10.
PLoS One ; 11(7): e0159027, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27391106

RESUMEN

We developed a novel enzyme immunoassay for the detection of group A rotavirus (RVA) antigen in fecal samples of multiple host species. The assay is based on the detection of conserved VP6 protein using anti-recombinant VP6 antibodies as capture antibodies and anti-multiple antigenic peptide (identified and constructed from highly immunodominant epitopes within VP6 protein) antibodies as detector antibodies. The clinical utility of the assay was evaluated using a panel of 914 diarrhoeic fecal samples from four different host species (bovine, porcine, poultry and human) collected from diverse geographical locations in India. Using VP6- based reverse transcription-polymerase chain reaction (RT-PCR) as the gold standard, we found that the diagnostic sensitivity (DSn) and specificity (DSp) of the new assay was high [bovine (DSn = 94.2% & DSp = 100%); porcine (DSn = 94.6% & DSp = 93.3%); poultry (DSn = 74.2% & DSp = 97.7%) and human (DSn = 82.1% & DSp = 98.7%)]. The concordance with RT-PCR was also high [weighted kappa (k) = 0.831-0.956 at 95% CI = 0.711-1.0] as compared to RNA-polyacrylamide gel electrophoresis (RNA-PAGE). The performance characteristics of the new immunoassay were comparable to those of the two commercially available ELISA kits. Our results suggest that this peptide-recombinant protein based assay may serve as a preliminary assay for epidemiological surveillance of RVA antigen and for evaluation of vaccine effectiveness especially in low and middle income settings.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Enfermedades de los Bovinos/inmunología , Enfermedades de las Aves de Corral/inmunología , Infecciones por Rotavirus , Rotavirus/inmunología , Animales , Antígenos Virales/química , Antígenos Virales/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Bovinos , Ensayo de Inmunoadsorción Enzimática , Cobayas , Humanos , Aves de Corral , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Rotavirus/química , Rotavirus/genética , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/veterinaria
11.
In Vitro Cell Dev Biol Anim ; 50(6): 538-48, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24414976

RESUMEN

Mesenchymal stem cells (MSCs) isolated from umbilical cord blood (UCB) in equines have not been well characterized with respect to the expression of pluripotency and mesenchymal markers and for tenogenic differentiation potential in vitro. The plastic adherent fibroblast-like cells isolated from 13 out of 20 UCB samples could proliferate till passage 20. The cells expressed pluripotency markers (OCT4, NANOG, and SOX2) and MSC surface markers (CD90, CD73, and CD105) by RT-PCR, but did not express CD34, CD45, and CD14. On immunocytochemistry, the isolated cells showed expression of CD90 and CD73 proteins, but tested negative for CD34 and CD45. In flow cytometry, CD29, CD44, CD73, and CD90 were expressed by 96.36 ± 1.28%, 93.40 ± 0.70%, 73.23 ± 1.29% and 46.75 ± 3.95% cells, respectively. The UCB-MSCs could be differentiated to tenocytes by culturing in growth medium supplemented with 50 ng/ml of BMP-12 by day 10. The differentiated cells showed the expression of mohawk homeobox (Mkx), collagen type I alpha 1 (Col1α1), scleraxis (Scx), tenomodulin (Tnmd) and decorin (Dcn) by RT-PCR. In addition, flow cytometry detected tenomodulin and decorin protein in 95.65 ± 2.15% and 96.30 ± 1.00% of differentiated cells in comparison to 11.30 ± 0.10% and 19.45 ± 0.55% cells, respect vely in undifferentiated control cells. The findings support the observation that these cells may be suitable for therapeutic applications, including ruptured tendons in racehorses.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , 5'-Nucleotidasa/biosíntesis , Animales , Células Cultivadas , Decorina/biosíntesis , Sangre Fetal/citología , Proteínas de Homeodominio/biosíntesis , Caballos , Proteínas de la Membrana/biosíntesis , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , Antígenos Thy-1/biosíntesis
12.
Cells Tissues Organs ; 198(5): 377-89, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24662023

RESUMEN

Tendon injuries are common in race horses, and mesenchymal stem cells (MSCs) isolated from adult and foetal tissue have been used for tendon regeneration. In the present study, we evaluated equine amniotic fluid (AF) as a source of MSCs and standardised methodology and markers for their in vitro tenogenic differentiation. Plastic-adherent colonies were isolated from 12 of 20 AF samples by day 6 after seeding and 70-80% cell confluency was reached by day 17. These cells expressed mesenchymal surface markers [cluster of differentiation (CD)73, CD90 and CD105] by reverse transcription (RT)-polymerase chain reaction (PCR) and immunocytochemistry, but did not express haematopoietic markers (CD34, CD45 and CD14). In flow cytometry, the expression of CD29, CD44, CD73 and CD90 was observed in 68.83 ± 1.27, 93.66 ± 1.80, 96.96 ± 0.44 and 93.7 ± 1.89% of AF-MSCs, respectively. Osteogenic, chondrogenic and adipogenic differentiation of MSCs was confirmed by von Kossa and Alizarin red S, Alcian blue and oil red O staining, respectively. Upon supplementation of MSC growth media with 50 ng/ml bone morphogenetic protein (BMP)-12, AF-MSCs differentiated to tenocytes within 14 days. The differentiated cells were more slender, elongated and spindle shaped with thinner and longer cytoplasmic processes and showed expression of tenomodulin and decorin by RT-PCR and immunocytochemistry. In flow cytometry, 96.7 ± 1.90 and 80.9 ± 6.4% of differentiated cells expressed tenomodulin and decorin in comparison to 1.6 and 3.1% in undifferentiated control cells, respectively. Our results suggest that AF is an easily accessible and effective source of MSCs. On BMP-12 supplementation, AF-MSCs can be differentiated to tenocytes, which could be exploited for regeneration of ruptured or damaged tendon in race horses.


Asunto(s)
Líquido Amniótico/citología , Proteínas Morfogenéticas Óseas/farmacología , Células Madre Mesenquimatosas/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Caballos
13.
Arch Virol ; 158(1): 113-22, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23001697

RESUMEN

The complete genome of the Japanese encephalitis virus (JEV) strain JEV/eq/India/H225/2009(H225), isolated from an infected horse in India, was sequenced and compared to previously published JEV genomes. H225 genome was 10,977-nucleotides long, comprising a single ORF of 10,299-nucleotides, a 5'-UTR of 95 nucleotides and a 3'-UTR of 582 nucleotides. The H225 genome showed high levels of sequence identity with 47 fully sequenced JEV genomes, ranging from 99.3 % to 75.5 % for nucleotides and 99.2 % to 91.5 % for amino acid sequences. Phylogenetic analysis of the full-length sequence indicated that the H225 strain belongs to genotype III and is closely related to the Indian JEV strain Vellore P20778. A comparison of amino acids associated with neurovirulence in the E proteins and non-structural proteins of known virulent and attenuated JEV strains suggested H225 to be a highly virulent strain. This is the first report of whole-genome sequencing of a genotype III JEV genome isolated from equines.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Encefalitis Japonesa/veterinaria , Genoma Viral , Enfermedades de los Caballos/virología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Virus de la Encefalitis Japonesa (Especie)/clasificación , Encefalitis Japonesa/virología , Caballos , India , Datos de Secuencia Molecular , Filogenia , Proteínas Virales/genética
14.
J Vet Sci ; 13(3): 271-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23006956

RESUMEN

The present study describes the genotypic distribution of rotaviruses (RVs) in an Indian bovine population with unexpectedly higher proportions of G3 alone or in combination of G8/G10. PCR-genotyping confirmed that 39.4% (13/33) of the prevalent RVs were the G3 type while 60.6% (20/33) were dual G3G10 or G3G8 types. P typing revealed that 93.9% (31/33) of the samples were P[11] while 6.1% (2/33) possessed a dual P[1]P[11] type. Sequence analysis of the VP7 gene from G3 strains viz. B-46, 0970, and BR-133 showed that these strains had sequence identities of 90.5% to 100% with other bovine G3 strains. The highest identity (98.9% to 100%) was observed with RUBV3 bovine G3 strains from eastern India. The G3 strains (B-46, 0970, and BR-133) showed 97.5% to 98.8% sequence homologies with the Indian equine RV strain Erv-80. Phylogenetic analysis demonstrated that G3 strains clustered with bovine RUBV3 and J-63, and equine Erv-80 G3. Overall, these results confirmed that the incidence of infection by RVs with the G3 genotype and mixed genotypes in the bovine population was higher than previously predicted. This finding reinforces the importance of constantly monitoring circulating viral strains with the G3 genotype in future surveillance studies.


Asunto(s)
Enfermedades de los Bovinos/virología , Infecciones por Rotavirus/veterinaria , Rotavirus/genética , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Clima Desértico , Heces/virología , Genotipo , India/epidemiología , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Rotavirus/clasificación , Rotavirus/aislamiento & purificación , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Análisis de Secuencia de Proteína/veterinaria , Análisis de Secuencia de ARN/veterinaria , Homología de Secuencia , Clima Tropical
15.
J Vet Sci ; 13(2): 111-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22705732

RESUMEN

Japanese encephalitis (JE) is an important vector-borne viral disease of humans and horses in Asia. JE outbreaks occur regularly amongst humans in certain parts of India and sporadic cases occur among horses. In this study, JE seroprevalence and evidence of JE virus (JEV) infection among horses in Haryana (India) is described. Antibodies against JEV were detected in 67 out of 637 (10.5%) horses screened between 2006 and 2010. Two foals exhibiting neurological signs were positive for JEV RNA by RT-PCR; JEV was isolated from the serum of one of the foals collected on the second day of illness. This is the first report of JEV isolation from a horse in India. Furthermore, a pool of mosquitoes collected from the premises housing these foals was positive for JEV RNA by RT-PCR. Three structural genes, capsid (C), premembrane (prM), and envelope (E) of the isolated virus (JE/eq/India/H225/2009) spanning 2,500 nucleotides (from 134 to 2,633) were cloned and sequenced. BLAST results showed that these genes had a greater than 97% nucleotide sequence identity with different human JEV isolates from India. Phylogenetic analysis based on E-and C/prM genes indicated that the equine JEV isolate belonged to genotype III and was closely related to the Vellore group of JEV isolates from India.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Encefalitis Japonesa/veterinaria , Enfermedades de los Caballos/virología , Animales , Anticuerpos Monoclonales , Clonación Molecular , Culex/virología , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/virología , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Genes Virales , Genotipo , Enfermedades de los Caballos/epidemiología , Caballos , India/epidemiología , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Estudios Seroepidemiológicos
16.
J Vet Sci ; 12(4): 341-5, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22122900

RESUMEN

The seroprevalence of Japanese encephalitis virus (JEV) among equines was evaluated from January 2006 to December 2009 in 13 different states of India by hemagglutination inhibition (HI) test and virus neutralization test (VNT). Antibodies against JEV were detected in 327 out of 3,286 (10%) equines with a maximum prevalence reported in the state of Manipur (91.7%) followed by Gujarat (18.5%), Madhya Pradesh (14.4%), and Uttar Pradesh (11.6%). Evidence of JEV infection was observed in equines in Indore (Madhya Pradesh) where a 4-fold or higher rise in antibody titer was observed in 21 out of 34 horses in November 2007 to October 2006. In March 2008, seven of these horses had a subsequent 4-fold rise in JEV antibody titers while this titer decreased in nine animals. JEV-positive horse sera had a JEV/WNV (West Nile virus) ratio over 2.0 according to the HI and/or VNT. These results indicated that JEV is endemic among equines in India.


Asunto(s)
Encefalitis Japonesa/veterinaria , Equidae , Animales , Encefalitis Japonesa/sangre , Encefalitis Japonesa/epidemiología , India/epidemiología , Pruebas de Neutralización , Estudios Seroepidemiológicos , Factores de Tiempo
17.
Vet Ital ; 46(4): 449-58, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21120800

RESUMEN

Equine influenza is a contagious viral disease that affects all members of the family Equidae, i.e., horses, donkeys and mules. The authors describe the pattern of equine influenza outbreaks in a number of states of India from July 2008 to June 2009. The disease was first reported in June 2008 in Katra (Jammu and Kashmir) and spread to ten other states within a year. All outbreaks of equine influenza in the various states were confirmed by laboratory investigations (virus isolation and/or serological confirmation based on haemagglutination inhibition [HI] assays of paired samples) before declaring them as equine influenza virus-affected state(s). The virus (H3N8) was reported from various locations in the country including Katra, Mysore (Karnataka), Ahmedabad (Gujarat), Gopeshwar and Uttarkashi (Uttarakhand) and was isolated in 9- to 11-day-old embryonated chicken eggs. The virus was confirmed as H3N8 by HI assays with standard serum and amplification of full-length haemagglutinin and neuraminidase genes by reverse transcriptase-polymerase chain reaction. Serum samples (n = 4 740) of equines from 13 states in India screened by HI revealed 1074 (22.65%) samples as being positive for antibodies to equine influenza virus (H3N8).


Asunto(s)
Brotes de Enfermedades , Subtipo H3N8 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/epidemiología , Animales , India/epidemiología , Agrupamiento Espacio-Temporal
18.
Trop Anim Health Prod ; 42(8): 1817-20, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20607400

RESUMEN

Group A rotaviruses play an important role in causing gastroenteritis and mortality in buffalo (Bubalus bubalis) calves. A number of assays like RNA-polyacrylamide gel electrophoresis (RNA-PAGE), enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR) and virus isolation have been employed for rotavirus diagnosis. We evaluated the comparative efficacy of different assays for detection of group A rotavirus in buffalo calves. A total of 455 faecal samples collected from five organized farms in northern India were screened by monoclonal antibody based ELISA, 33 (7.25%) samples were positive for group A rotavirus. The percent positivity ranged from 3.22% to 28% in different organized farms. The same samples were also tested by RNA-PAGE, which revealed classical 11 segments with 4:2:3:2 migration patterns in 14 faecal samples showing 3.08% positivity. Virus isolation was successfully done from 21 (4.61%) samples. However, only 15 (3.3%) samples yielded a specific product of 864 and 1,011 bp for VP4 and VP7 genes, respectively, by RT-PCR. The sensitivity and specificity of ELISA, RNA-PAGE and RT-PCR was 100%, 66.67% and 71.43% and 97%, 100% and 100%, respectively, considering virus isolation as standard test. ELISA being simple, fast and sensitive assay can be used as routine laboratory test for the diagnosis of group A rotavirus and field epidemiological studies.


Asunto(s)
Búfalos , Heces/virología , Infecciones por Rotavirus/diagnóstico , Rotavirus/genética , Animales , Electroforesis en Gel de Poliacrilamida/métodos , Electroforesis en Gel de Poliacrilamida/veterinaria , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/veterinaria , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Sensibilidad y Especificidad
20.
Virus Res ; 138(1-2): 36-42, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18793686

RESUMEN

Group A bovine rotaviruses cause gastroenteritis and calf mortality leading to significant economic losses to dairy farmers in India. Due to segmented nature of the RNA genome and wide host range, vast genetic and antigenic diversity exists among different isolates of rotavirus. Molecular characterization of locally prevalent group A rotavirus strains in buffalo population in north India was undertaken. Out of a total of 455 faecal samples, 21 samples (4.61%) were positive for bovine rota virus (BRV) as determined by PAGE and ELISA, whereas of these only 15 isolates yielded specific products for VP4 and VP7 genes by RT-PCR. Genotyping by nested PCR typed G6, G10 and P[11] genotypes but VP4 genes of 11 isolates remained untyped. The phylogenetic and evolutionary analysis of nucleotide and predicted amino acid sequences of the cloned products of VP4 and VP7 genes confirmed typing results obtained by nested PCR for G6, G10 and P[11] and classified the untyped isolates as P[3] genotypes. In this study, it was observed that G6P[11] (26.66%) and G10P[3] (73.34%) group A rotaviruses are circulating in buffalo herds of organized farms in north India. Unusual reassortants G10P[3] of group A rotaviruses isolated from buffalo calves show novel genomic constellations indicative of interspecies reassortment.


Asunto(s)
Búfalos/virología , Enfermedades de los Bovinos/virología , Genoma Viral , Infecciones por Rotavirus/veterinaria , Rotavirus/genética , Rotavirus/aislamiento & purificación , Animales , Bovinos , Heces/virología , India , Datos de Secuencia Molecular , Filogenia , Rotavirus/clasificación , Infecciones por Rotavirus/virología , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA