Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Plant Biotechnol J ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276323

RESUMEN

Vernalization and photoperiod pathways converging at FT1 control the transition to flowering in wheat. Here, we identified a gain-of-function mutation in FT-D1 that results in earlier heading date (HD), and shorter plant height and spike length in the gamma ray-induced eh1 wheat mutant. Knockout of the wild-type and overexpression of the mutated FT-D1 indicate that both alleles are functional to affect HD and plant height. Protein interaction assays demonstrated that the frameshift mutation in FT-D1eh1 exon 3 led to gain-of-function interactions with 14-3-3A and FDL6, thereby enabling the formation of florigen activation complex (FAC) and consequently activating a flowering-related transcriptomic programme. This mutation did not affect FT-D1eh1 interactions with TaNaKR5 or TaFTIP7, both of which could modulate HD, potentially via mediating FT-D1 translocation to the shoot apical meristem. Furthermore, the 'Segment B' external loop is essential for FT-D1 interaction with FDL6, while residue Y85 is required for interactions with TaNaKR5 and TaFTIP7. Finally, the flowering regulatory hub gene, ELF5, was identified as the FT-D1 regulatory target. This study illustrates FT-D1 function in determining wheat HD with a suite of interaction partners and provides genetic resources for tuning HD in elite wheat lines.

2.
RSC Adv ; 14(34): 24574-24584, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39108961

RESUMEN

Metal phosphides and phosphate-based materials have received significant attention due to their high electrocatalytic activity, adjustable structure composition and stability. Herein, we introduce a phytic acid-based CoMn bimetallic metal-organic (PA-CoMn) aerogel as an electrode modifier, derived from PA and mixed transition metal ions (Co2+, Mn2+). We explored its performance in the sensitive sensing of non-steroidal anti-inflammatory drug 4-acetaminophenol (4-AP) for the first time. We investigated the electrochemical behavior of the modified screen-printed carbon electrode (SPCE) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The PA-CoMn-1 : 1.5 : 0.5 aerogel/Nafion/SPCE proved to be highly sensitive and selective towards the detection of 4-AP. A double linear response was recorded for 4-AP over the range of 1 µM to 0.1 mM and lower detection limits (LOD) of 0.2133 µM. The applicability of the PA-CoMn-1 : 1.5 : 0.5 aerogel/Nafion/SPCE in the detection of 4-AP in commercial drug samples with good recoveries was investigated, confirming the great potential of PA-CoMn-1 : 1.5 : 0.5 aerogel/SPCE in clinical applications.

3.
ACS Appl Mater Interfaces ; 16(35): 46810-46821, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39178378

RESUMEN

Optical camouflage offers an effective strategy for enhancing the survival chances of underwater flexible electronic devices akin to underwater organisms. Photochromism is one of the most effective methods to achieve optical camouflage. In this study, antiswelling hydrogels with photochromic properties were prepared using a two-step solvent replacement strategy and explored as underwater optically camouflaged flexible electronic devices. The hydrophobic network formed upon polymerization of hydroxyethyl methacrylate (HEMA) ensured that the hydrogels possessed outstanding antiswelling properties. Internetwork hydrogen bonding interactions allowed the hydrogels to exhibit tissue-adaptable mechanical properties and excellent self-bonding capabilities. The introduction of polyoxometalates further enhanced the hydrogels' mechanical and self-bonding properties while imparting photochromic capability. The hydrogels could be rapidly and reversibly colored under 365 nm UV irradiation. The bleaching rate of the colored hydrogels increased with temperature, bleaching within 12 h at 60 °C but maintaining the color for more than 5 days at room temperature. The self-bonding and photochromic properties enabled the hydrogels to be easily assembled into optically camouflaged underwater flexible electronic devices for underwater motion sensing and wireless information transmission. An optically camouflaged strain sensor was first assembled for underwater limb motion sensing. Additionally, an underwater optically camouflaged wireless information exchange device was assembled to enable wireless communication with a smartphone. This work provided an effective strategy for the optical camouflage of underwater flexible electronic devices, presenting opportunities for next-generation underwater hydrogel-based flexible devices.

4.
Sci Rep ; 14(1): 12917, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839811

RESUMEN

Allii Macrostemonis Bulbus (AMB) is a traditional Chinese medicine with medicinal and food homology. AMB has various biological activities, including anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Saponins from Allium macrostemonis Bulbus (SAMB), the predominant beneficial compounds, also exhibited lipid-lowering and anti-inflammatory properties. However, the effect of SAMB on atherosclerosis and the underlying mechanisms are still unclear. This study aimed to elucidate the pharmacological impact of SAMB on atherosclerosis. In apolipoprotein E deficiency (ApoE-/-) mice with high-fat diet feeding, oral SAMB administration significantly attenuated inflammation and atherosclerosis plaque formation. The in vitro experiments demonstrated that SAMB effectively suppressed oxidized-LDL-induced foam cell formation by down-regulating CD36 expression, thereby inhibiting lipid endocytosis in bone marrow-derived macrophages. Additionally, SAMB effectively blocked LPS-induced inflammatory response in bone marrow-derived macrophages potentially through modulating the NF-κB/NLRP3 pathway. In conclusion, SAMB exhibits a potential anti-atherosclerotic effect by inhibiting macrophage foam cell formation and inflammation. These findings provide novel insights into potential preventive and therapeutic strategies for the clinical management of atherosclerosis.


Asunto(s)
Aterosclerosis , Células Espumosas , Inflamación , Saponinas , Animales , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Saponinas/farmacología , Ratones , Inflamación/tratamiento farmacológico , Inflamación/patología , Allium/química , Masculino , Apolipoproteínas E/deficiencia , Dieta Alta en Grasa/efectos adversos , FN-kappa B/metabolismo , Ratones Endogámicos C57BL , Lipoproteínas LDL/metabolismo
5.
Biology (Basel) ; 13(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38927310

RESUMEN

The erect leaf plays a crucial role in determining plant architecture, with its growth and development regulated by genetic factors. However, there has been a lack of comprehensive studies on the regulatory mechanisms governing wheat lamina joint development, thus failing to meet current breeding demands. In this study, a wheat erect leaf mutant, mths29, induced via fast neutron mutagenesis, was utilized for QTL fine mapping and investigation of lamina joint development. Genetic analysis of segregating populations derived from mths29 and Jimai22 revealed that the erect leaf trait was controlled by a dominant single gene. Using BSR sequencing and map-based cloning techniques, the QTL responsible for the erect leaf trait was mapped to a 1.03 Mb physical region on chromosome 5A. Transcriptome analysis highlighted differential expression of genes associated with cell division and proliferation, as well as several crucial transcription factors and kinases implicated in lamina joint development, particularly in the boundary cells of the preligule zone in mths29. These findings establish a solid foundation for understanding lamina joint development and hold promise for potential improvements in wheat plant architecture.

7.
Microb Pathog ; 192: 106709, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810766

RESUMEN

This study prepared a novel monoclonal antibody (MAb) against mink enteritis parvovirus (MEV) and identified its antigen epitope. The antibody subclass is identified as IgG1, the titers of the MAb is up to 1:1 × 106 and keeps stably after low-temperature storage for 9 months or 11 passages of the MAb cells. The MAb can specifically recognize MEV in the cells in IFA, but not Aleutian disease virus (ADV) or canine distemper virus (CDV). Its antigen epitope was identified as a polypeptide containing 5 key amino acids (378YAFGR382) and the homology in 20 MEV strains, 4 canine parvovirus strains, and 4 feline panleukopenia virus strains was 100%. This study supplies a biological material for developing new methods to detect MEV.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Virus del Moquillo Canino , Epítopos , Virus de la Enteritis del Visón , Animales , Anticuerpos Monoclonales/inmunología , Epítopos/inmunología , Virus de la Enteritis del Visón/inmunología , Virus del Moquillo Canino/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Visón/inmunología , Inmunoglobulina G/inmunología , Virus de la Enfermedad Aleutiana del Visón/inmunología , Parvovirus Canino/inmunología , Virus de la Panleucopenia Felina/inmunología , Mapeo Epitopo , Ratones , Ratones Endogámicos BALB C , Enteritis Viral del Visón/inmunología
8.
Food Chem ; 447: 139039, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38518619

RESUMEN

Euphorbiae Humifusae Herba (EHH) was provided with medicinal and edible uses, but frequently was adulterated with its closely related species. Hence, this study sought to identify EHH via an integrated approach comprising data from its morphological evaluation, HPLC analysis, comparative plastomes analysis and allele-specific PCR identification. First, the morphological characteristics of 8 subgenus Chamaesyce plants were summarized. Then, HPLC analysis showed that 18 batches of EHH were adulterated or unqualified. Furthermore, the plastomes of the 8 subg. Chamaesyce species were analyzed. Phylogenetic analysis revealed a sister relationship among the 8 subg. Chamaesyce species. The allele-specific PCR authentication was developed by the nucleotide polymorphisms (SNPs) and insertions or deletions (InDels) analysis. The results of allele-specific PCR showed that 27 batches of EHH were adulterated, indicating that the superior sensitivity of molecular authentication over the other methods used. This study provided a reference for rational use and phylogenetic research of EHH.


Asunto(s)
Euphorbia , Filogenia , Euphorbia/clasificación
9.
Plant Physiol Biochem ; 207: 108425, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38368728

RESUMEN

As climate change continues to negatively impact our farmlands, abiotic factors like salinity and drought stress increasingly threaten global food security. The development of elite germplasms with resistance to multiple abiotic stresses is essential for breeding climate-resilient wheat cultivars. In this study, we determined that the previously reported salt-tolerant st1 mutant, obtained via spaceflight mutagenesis, may also resist to drought stress at the seedling stage. Moreover, our field trial revealed that yield-related traits including plant height, 1000-grain weight, and spike number per plant were significantly increased in st1 compared to the wild type. An F2 population of 334 individuals derived from a cross between the wild type and st1 displayed a bimodal distribution indicating that st1 plant height is controlled by a single major gene. Our Bulked Segregant Analysis and exome capture sequencing indicate that this gene is located on chromosome 4D. Further genetic linkage and gene sequence analysis suggests that a reverse mutation of Rht2 is putatively responsible for plant height variation in st1. Our genotypic and phenotypic analysis of the F2 population and F3 lines indicate that this reverse mutation significantly increases plant height and thousand grain weight but slightly decreases spike number per plant. Together, these results supply helpful information for the utilization of Rht2 in wheat breeding and provide an important material for breeding environmentally resilient, high-yield wheat varieties.


Asunto(s)
Vuelo Espacial , Triticum , Humanos , Triticum/genética , Fitomejoramiento , Fenotipo , Mutación/genética , Grano Comestible
10.
RSC Adv ; 14(7): 4556-4567, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38312719

RESUMEN

A highly efficient 3D flower MoS2 (3D-FM)-based heterostructure photocatalyst (3D-FM/BiOI) was successfully obtained via a simple hydrothermal synthesis strategy. 3D-FM/BiOI showed prominent photoelectrochemical performance, distinguished stability and good selectivity. The introduction of 3D-FM, by promoting the photoelectric property attributed to it, facilitated the separation of photogenerated electron-hole pairs. Since the redox process of l-ascorbic acid (l-AA) resulted in an increasing photocurrent of 3D-FM/BiOI, a signal "switch-on" photoelectrochemical sensor (PECS) was designed to sensitively determine l-AA for the first time. Under optimized conditions, the 3D-FM/BiOI PECS worked over a wide range from 1 µM to 0.8 mM with a low detection limit of 0.05 µM (S/N = 3). The PECS was successfully exploited for l-AA sensing in human urine with excellent accuracy and applicability, demonstrating its practical precision and superb serviceability. Furthermore, the 3D-FM/BiOI PECS exhibited satisfactory selectivity and stability, providing a great potential platform for the construction of an l-AA sensor in various practical samples and complicated environments.

11.
Curr HIV Res ; 22(2): 100-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38310467

RESUMEN

BACKGROUND: Second-line antiretroviral therapy (ART) was introduced in Henan Province in 2009. The number of people living with human immunodeficiency virus (HIV) starting this therapy is increasing. OBJECTIVE: This study aimed to investigate the survival and factors affecting mortality among this group. METHODS: We conducted a retrospective cohort study of people living with HIV (PLHIV) who switched to second-line ART between May 1, 2010, and May 1, 2016, using the Kaplan-Meier method and Cox proportional hazards models. RESULTS: We followed 3,331 PLHIV for 26,988 person-years, of whom 508 (15.3%) died. The mortality rate was 1.88/100 person-years. After adjusting for confounding factors, we found being a woman (hazard ratio (HR), 0.66; 95% confidence interval (CI) 0.55-0.79), > 50 years old (HR, 2.69; 95% CI, 2.03-3.56), single/widowed (HR, 1.26; 95% CI, 1.04-1.52), having > 6 years of education (HR, 0.78; 95% CI, 0.65-0.94), Chinese medicine (HR, 0.75; 95% CI, 0.52-0.96), liver injury (HR, 1.58; 95% CI, 1.19-2.10), and CD4+ T cell count <200 cells/µl (HR, 1.94; 95% CI, 1.47-2.55), or 200-350 cells/µl (HR, 1.37; 95% CI, 1.03-1.82) were associated with mortality risk. CONCLUSIONS: We found lower mortality among PLHIV who switched to second-line ART than most previous studies. The limitations of a retrospective cohort may, therefore, have biased the data, and prospective studies are needed to confirm the results. Moreover, Chinese medicine combined with second-line ART shows potential as a treatment for HIV.


Asunto(s)
Infecciones por VIH , Población Rural , Humanos , Femenino , Masculino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/mortalidad , Estudios Retrospectivos , China/epidemiología , Adulto , Persona de Mediana Edad , Factores de Riesgo , Población Rural/estadística & datos numéricos , Fármacos Anti-VIH/uso terapéutico , Recuento de Linfocito CD4 , Terapia Antirretroviral Altamente Activa , Modelos de Riesgos Proporcionales , Adulto Joven
12.
Mol Breed ; 44(2): 12, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38313680

RESUMEN

Tiller number greatly contributes to grain yield in wheat. Using ethylmethanesulfonate mutagenesis, we previously discovered the oligo-tillering mutant ot1. The tiller number was significantly lower in ot1 than in the corresponding wild type from the early tillering stage until the heading stage. Compared to the wild type, the thousand-grain weight and grain length were increased by 15.41% and 31.44%, respectively, whereas the plant height and spike length were decreased by 26.13% and 37.25%, respectively. Transcriptomic analysis was conducted at the regreening and jointing stages to identify differential expressed genes (DEGs). Functional enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases showed differential expression of genes associated with ADP binding, transmembrane transport, and transcriptional regulation during tiller development. Differences in tiller number in ot1 led to the upregulation of genes in the strigolactone (SL) and abscisic acid (ABA) pathways. Specifically, the SL biosynthesis genes DWARF (D27), D17, D10, and MORE AXILLARY GROWTH 1 (MAX1) were upregulated by 3.37- to 8.23-fold; the SL signal transduction genes D14 and D53 were upregulated by 1.81- and 1.32-fold, respectively; the ABA biosynthesis genes 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) and NCED5 were upregulated by 1.66- and 3.4-fold, respectively; and SNF1-REGULATED PROTEIN KINASE2 (SnRK2) and PROTEIN PHOSPHATASE 2C (PP2C) genes were upregulated by 1.30- to 4.79-fold. This suggested that the tiller number reduction in ot1 was due to alterations in plant hormone pathways. Genes known to promote tillering growth were upregulated, whereas those known to inhibit tillering growth were downregulated. For example, PIN-FORMED 9 (PIN9), which promotes tiller development, was upregulated by 8.23-fold in ot1; Ideal Plant Architecture 1 (IPA1), which inhibits tiller development, was downregulated by 1.74-fold. There were no significant differences in the expression levels of TILLER NUMBER 1 (TN1) or TEOSINTE BRANCHED 1 (TB1), indicating that the tiller reduction in ot1 was not controlled by known genes. Our findings provide valuable data for subsequent research into the genetic bases and regulatory mechanisms of wheat tillering. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01450-3.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38018535

RESUMEN

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), a prominent conducting polymer, holds significance in both industry and academia. However, prevailing fabrication techniques struggle to build spanning features of PEDOT:PSS with both high electrical conductivity and fine resolution due to layerwise assembly in the xy plane. Here, we report an "omnidirectional printing and secondary doping" strategy to construct spanning, filamentary and out-of-plane 3D PEDOT:PSS with high conductivity. The pristine PEDOT:PSS suspension is homogeneously concentrated to form a printable ink with high solids (∼15 wt %) consisting of entangled PEDOT:PSS nanofibrils. Such ink shows a high storage modulus G' (43531 Pa) and a high yield stress τy (4325 Pa), thereby enabling omnidirectional printing. Secondary doping with sulfuric acid or other polar solvents is used to induce a synergetic process of PSS loss, conformational change, phase separation, and crystallinity enhancement in the printed structures, resulting in a remarkable enhancement of conductivity in dehydrated (65,378 S/m) and swollen (7190 S/m) states. As a proof-of-concept, 2D grids with a feature size of 15 µm and 3D overhanging arches are fabricated for high-performance transparent glass heaters and 3D interconnection, respectively. This work promises great potential for the development of advanced flexible electronics, wearable devices, and bioelectronics.

15.
Plant Sci ; 336: 111862, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716191

RESUMEN

Homeodomain proteins encoded by BEL1- and KNAT1-type genes are ubiquitously distributed across plant species and play important roles in growth and development, whereby a comprehensive investigation of their molecular interactions and potential functions in wheat is of great significance. In this study, we systematically investigated the phylogenetic relationships, gene structures, conserved domains, and cis-acting elements of 34 TaBEL and 34 TaKNAT genes in the wheat genome. Our analysis revealed these genes evolved under different selective pressures and showed variable transcript levels in different wheat tissues. Subcellular localization analysis further indicated the proteins encoded by these genes were either exclusively located in the nucleus or both in the nucleus and the cytoplasm. Additionally, a comprehensive protein-protein interaction network was constructed with representative genes in which each TaBEL or TaKNAT proteins interact with at least two partners. The evaluation of wheat mutants identified key genes, including TaBEL-5B, TaBEL-4A.4, and TaKNAT6, which are involved in grain-related traits. Finally, haplotype analysis suggests TaKNAT-6B is associated with grain-related traits and is preferentially selected among a large set of wheat accessions. Our study provides important information on BEL1- and KNAT1-type gene families in wheat, and lays the foundation for functional research in the future.

16.
BMC Plant Biol ; 23(1): 377, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528349

RESUMEN

BACKGROUND: Induction of mutation through chemical mutagenesis is a novel approach for preparing diverse germplasm. Introduction of functional alleles in the starch biosynthetic genes help in the improvement of the quality and yield of cereals. RESULTS: In the present study, a set of 350 stable mutant lines were used to evaluate dynamic variation of the total starch contents. A megazyme kits were used for measuring the total starch content, resistant starch, amylose, and amylopectin content. Analysis of variance showed significant variation (p < 0.05) in starch content within the population. Furthermore, two high starch mutants (JE0173 and JE0218) and two low starch mutants (JE0089 and JE0418) were selected for studying different traits. A multiple comparison test showed that significant variation in all physiological and morphological traits, with respect to the parent variety (J411) in 2019-2020 and 2020-2021. The quantitative expression of starch metabolic genes revealed that eleven genes of JE0173 and twelve genes of JE0218 had consistent expression in high starch mutant lines. Similarly, in low starch mutant lines, eleven genes of JE0089 and thirteen genes of JE0418 had consistent expression in all stages of seed development. An additional two candidate genes showed over-expression (PHO1, PUL) in the high starch mutant lines, indicating that other starch metabolic genes may also contribute to the starch biosynthesis. The overexpression of SSII, SSIII and SBEI in JE0173 may be due to presence of missense mutations in these genes and SSI also showed overexpression which may be due to 3-primer_UTR variant. These mutations can affect the other starch related genes and help to increase the starch content in this mutant line (JE0173). CONCLUSIONS: This study screened a large scale of mutant population and identified mutants, could provide useful genetic resources for the study of starch biosynthesis and genetic improvement of wheat in the future. Further study will help to understand new genes which are responsible for the fluctuation of total starch.


Asunto(s)
Almidón , Triticum , Almidón/metabolismo , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amilosa/metabolismo , Amilopectina/genética , Amilopectina/metabolismo
17.
Int J Biol Macromol ; 251: 126159, 2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37549760

RESUMEN

ß-lactamase, an enzyme secreted by bacteria, is the main resistant mechanism of Gram-negative bacteria to ß-lactam antibiotics. The resistance of bacteria to ß-lactam antibiotics can be evaluated by testing the activity of ß-lactamase. Traditional phenotypic detection is a golden principle, but it is time-consuming. In recent years, many new methods have emerged, which improve the efficiency by virtue of their sensitivity, low cost, easy operation, and other advantages. In this paper, we systematically review these researches and emphasize their limits of detection, sample operation, and test duration. Noteworthily, some detection systems can identify the ß-lactamase subtype conveniently. We mainly divide these tests into three categories to elaborate their characteristics and application status. Both advantages and disadvantages of these methods are discussed. Additionally, we analyze the recent 5 years published researches to predict the trend of development in this field.

18.
Front Plant Sci ; 14: 1213807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416884

RESUMEN

Heavy ion beam (HIB) is an effective physical mutagen that has been widely used in plant mutational breeding. Systemic knowledge of the effects caused by different HIB doses at developmental and genomic levels will facilitate efficient breeding for crops. Here we examined the effects of HIB systematically. Kitaake rice seeds were irradiated by ten doses of carbon ion beams (CIB, 25 - 300 Gy), which is the most widely used HIB. We initially examined the growth, development and photosynthetic parameters of the M1 population and found that doses exceeding 125 Gy caused significant physiological damages to rice. Subsequently, we analyzed the genomic variations in 179 M2 individuals from six treatments (25 - 150 Gy) via whole-genome sequencing (WGS). The mutation rate peaks at 100 Gy (2.66×10-7/bp). Importantly, we found that mutations shared among different panicles of the same M1 individual are at low ratios, validating the hypothesis that different panicles may be derived from different progenitor cells. Furthermore, we isolated 129 mutants with distinct phenotypic variations, including changes in agronomic traits, from 11,720 M2 plants, accounting for a 1.1% mutation rate. Among them, about 50% possess stable inheritance in M3. WGS data of 11 stable M4 mutants, including three lines with higher yields, reveal their genomic mutational profiles and candidate genes. Our results demonstrate that HIB is an effective tool that facilitates breeding, that the optimal dose range for rice is 67 - 90% median lethal dose (LD50), and that the mutants isolated here can be further used for functional genomic research, genetic analysis, and breeding.

19.
Plant Biotechnol J ; 21(10): 2047-2056, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37401008

RESUMEN

Hexaploid wheat (Triticum aestivum), a major staple crop, has a remarkably large genome of ~14.4 Gb (containing 106 913 high-confidence [HC] and 159 840 low-confidence [LC] genes in the Chinese Spring v2.1 reference genome), which poses a major challenge for functional genomics studies. To overcome this hurdle, we performed whole-exome sequencing to generate a nearly saturated wheat mutant database containing 18 025 209 mutations induced by ethyl methanesulfonate (EMS), carbon (C)-ion beams, or γ-ray mutagenesis. This database contains an average of 47.1 mutations per kb in each gene-coding sequence: the potential functional mutations were predicted to cover 96.7% of HC genes and 70.5% of LC genes. Comparative analysis of mutations induced by EMS, γ-rays, or C-ion beam irradiation revealed that γ-ray and C-ion beam mutagenesis induced a more diverse array of variations than EMS, including large-fragment deletions, small insertions/deletions, and various non-synonymous single nucleotide polymorphisms. As a test case, we combined mutation analysis with phenotypic screening and rapidly mapped the candidate gene responsible for the phenotype of a yellow-green leaf mutant to a 2.8-Mb chromosomal region. Furthermore, a proof-of-concept reverse genetics study revealed that mutations in gibberellic acid biosynthesis and signalling genes could be associated with negative impacts on plant height. Finally, we built a publically available database of these mutations with the corresponding germplasm (seed stock) repository to facilitate advanced functional genomics studies in wheat for the broad plant research community.


Asunto(s)
Genómica , Triticum , Triticum/genética , Secuenciación del Exoma , Mutación/genética , Mutagénesis , Metanosulfonato de Etilo/farmacología , Genoma de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA