Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Front Vet Sci ; 11: 1439029, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39444736

RESUMEN

Background: RNA editing, especially A-to-I editing sites, is a common RNA modification critical for stem cell differentiation, muscle development, and disease occurrence. Unveiling comprehensive RNA A-to-I editing events associated with myogenesis of the skeletal muscle satellite cells (MuSCs) is essential for extending our knowledge of the mechanism underpinning muscle development. Results: A total of 9,632 RNA editing sites (RESs) were screened in the myoblasts (GM), myocytes (DM1), and myotubes (DM5) samples. Among these sites, 4,559 A-to-I edits were classified and further analyzed. There were 3,266 A-to-I sites in the protein-coding region, out of which 113 missense sites recoded protein. Notably, five A-to-I sites in the 3' UTR of four genes (TRAF6, NALF1, SLC38A1, ENSCHIG00000019092) altered their targeted miRNAs. Furthermore, a total of 370 A-to-I sites with different editing levels were detected, including FBN1, MYH10, GSK3B, CSNK1D, and PRKACB genes. These genes were predominantly enriched in the cytoskeleton in muscle cells, the hippo signaling pathway, and the tight junction. Furthermore, we identified 14 hub genes (TUFM, GSK3B, JAK2, RPSA, YARS1, CDH2, PRKACB, RUNX1, NOTCH2, CDC23, VCP, FBN1, RARS1, MEF2C) that potentially related to muscle development. Additionally, 123 stage-specific A-to-I editing sites were identified, with 43 sites in GM, 25 in DM1, and 55 in DM5 samples. These stage-specific edited genes significantly enriched essential biological pathways, including the cell cycle, oocyte meiosis, motor proteins, and hedgehog signaling pathway. Conclusion: We systematically identified the RNA editing events in proliferating and differentiating goat MuSCs, which was crucial for expanding our understanding of the regulatory mechanisms of muscle development.

2.
Front Microbiol ; 15: 1467205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39411440

RESUMEN

Understanding the colonization and change patterns of gut microbiota is pivotal for comprehending host health. As a newly cultured breed, the studies on the gut microbiota of Tianfu goats remain limited. This study aimed to address this gap by analyzing the microbial composition and colonization patterns of fecal samples collected from goat kids from birth to weaning. Fecal samples were collected on days 0, 7, 14, 21, 28, 35, 42, 49, 53, 55, 57, and 64, and the changes and colonization patterns of microorganisms were analyzed through high-throughput 16S rRNA sequencing. The results showed that the abundance of fecal microbiota in goat kids gradually increased over time, followed by a decrease after weaning and stabilization, with reduced individual differences. The colonization of fecal microorganisms mainly presented three different stages: days 0-14, days 21-49, and days 53-64. During the suckling period, the relative abundance of Proteobacteria (72.34%) was the highest, followed by Firmicutes (21.66%). From 21 days old, the microbiota in goat kids gradually to be diverse, with Lachnospiraceae and Ruminococcaceae being dominant. During post-weaning, Ruminococcaceae (30.98-33.34%) was becoming prominence which helpful for cellulose decomposition. LEfSe analyzed three important time points (d0 vs. d7, d7 vs. d14, d49 vs. d53, LDA score > 4 and p < 0.05), 53 microbial communities with stage differences were identified. Functional prediction using PICRUSt revealed that differential microbial communities are mainly related to carbohydrate and amino acid metabolism pathways. Overall, this study addresses the intricate relationship between ages, diets, and microbiota compositions in Tianfu goat kids, and also offering insights into microorganisms-host interactions.

3.
Cells ; 13(19)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39404371

RESUMEN

As one of the most important economic traits for domestic animal husbandry, skeletal muscle is regulated by an intricate molecular network. Adenosine deaminase acting on RNA (ADAR1) involves various physiological processes and diseases, such as innate immunity and the development of lung adenocarcinoma, breast cancer, gastric cancer, etc. However, its role in skeletal muscle growth requires further clarification. Here, we explored the functions of ADAR1 in the myogenic process of goat skeletal muscle satellite cells (MuSCs). The ADAR1 transcripts were noticeably enriched in goat visceral tissues compared to skeletal muscle. Additionally, its levels in slow oxidative muscles like the psoas major and minor muscles were higher than in the fast oxidative glycolytic and fast glycolytic muscles. Among the two common isoforms from ADAR1, p110 is more abundant than p150. Moreover, overexpressing ADAR1 enhanced the proliferation and myogenic differentiation of MuSCs. The mRNA-seq performed on MuSCs' knockdown of ADAR1 obtained 146 differentially expressed genes (DEGs), 87 upregulated and 59 downregulated. These DEGs were concentrated in muscle development and process pathways, such as the MAPK and cAMP signaling pathways. Furthermore, many DEGs as the key nodes defined by protein-protein interaction networks (PPI), including STAT3, MYH3/8, TGFß2, and ACTN4, were closely related to the myogenic process. Finally, RNA immunoprecipitation combined with qPCR (RIP-qPCR) showed that ADAR1 binds to PAX7 and MyoD mRNA. This study indicates that ADAR1 promotes the myogenic development of goat MuSCs, which provides a useful scientific reference for further exploring the ADAR1-related regulatory networks underlying mammal skeletal muscle growth.


Asunto(s)
Adenosina Desaminasa , Diferenciación Celular , Proliferación Celular , Cabras , Desarrollo de Músculos , Células Satélite del Músculo Esquelético , Animales , Células Satélite del Músculo Esquelético/metabolismo , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Diferenciación Celular/genética , Desarrollo de Músculos/genética
4.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39337293

RESUMEN

Skeletal muscle development is spotlighted in mammals since it closely relates to animal health and economic benefits to the breeding industry. Researchers have successfully unveiled many regulatory factors and mechanisms involving myogenesis. However, the effect of N6-methyladenosine (m6A) modification, especially demethylase and its regulated genes, on muscle development remains to be further explored. Here, we found that the typical demethylase FTO (fat mass- and obesity-associated protein) was highly enriched in goats' longissimus dorsi (LD) muscles. In addition, the level of m6A modification on transcripts was negatively regulated by FTO during the proliferation of goat skeletal muscle satellite cells (MuSCs). Moreover, a deficiency of FTO in MuSCs significantly retarded their proliferation and promoted the expression of dystrophin-associated protein 1 (DAG1). m6A modifications of DAG1 mRNA were efficiently altered by FTO. Intriguingly, the results of DAG1 levels and its m6A enrichment from FB23-2 (FTO demethylase inhibitor)-treated cells were consistent with those of the FTO knockdown, indicating that the regulation of FTO on DAG1 depended on m6A modification. Further experiments showed that interfering FTO improved m6A modification at site DAG1-122, recognized by Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and consequently stabilized DAG1 transcripts. Our study suggests that FTO promotes the proliferation of MuSCs by regulating the expression of DAG1 through m6A modification. This will extend our knowledge of the m6A-related mechanism of skeletal muscle development in animals.


Asunto(s)
Adenosina , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Cabras , ARN Mensajero , Células Satélite del Músculo Esquelético , Animales , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Proliferación Celular , Células Cultivadas , Desarrollo de Músculos , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología
5.
Genomics ; 116(5): 110936, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39284386

RESUMEN

The circular RNA (circRNA) plays a crucial role in various biological processes, particularly posttranscriptional regulation. However, the role of circRNA in the development of goat skeletal muscle has not been thoroughly explored. Here, we identified circPAPD7, which is a novel circular RNA that is preferentially expressed in the skeletal muscle. Functional assays demonstrated that circPAPD7 promoted proliferation and inhibited differentiation in goat skeletal muscle satellite cells (MuSCs). Mechanistically, it was discovered that circPAPD7 interacts with miR-26a-5p. Moreover, the rescue experiments indicated that the overexpression of circPAPD7 may reverse the inhibitory impact of miR-26a-5p on myoblast proliferation and the accelerated effects on differentiation. Furthermore, we provided evidence that circPAPD7 functions as a sponge for miR-26a-5p, thereby facilitating the upregulation of EZH2 expression in goat MuSCs. Together, the results revealed that circPAPD7 promote proliferation and inhibit differentiation of goat MuSCs via the miR-26a-5p/EZH2 pathway.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Cabras , MicroARNs , ARN Circular , Células Satélite del Músculo Esquelético , Animales , Cabras/genética , Cabras/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , MicroARNs/metabolismo , MicroARNs/genética , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética
6.
Animals (Basel) ; 14(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272264

RESUMEN

The process of skeletal muscle development is intricate and involves the regulation of a diverse array of genes. Accurate gene expression profiles are crucial for studying muscle development, making it essential to choose the right reference genes for real-time quantitative PCR (RT-qPCR). In the present study, eight candidate reference genes were identified from our previous transcriptome sequencing analysis of caprine skeletal muscle satellite cells (MuSCs), and two traditional reference genes (ACTB and GAPDH) were assessed. The quantitative levels of the candidate reference genes were determined through the RT-qPCR technique, while the stability of their expression was evaluated utilizing the GeNorm, NormFinder, BestKeeper, and RefFinder programs. Furthermore, the chosen reference genes were utilized for the normalization of the gene expression levels of PCNA and Myf5. It was determined that conventional reference genes, including ACTB and GAPDH, were not appropriate for normalizing target gene expression. Conversely, RPL14 and RPS15A, identified through RNA sequencing analysis, exhibited minimal variability and were identified as the optimal reference genes for normalizing gene expression during the proliferation and differentiation of goat MuSCs. Our research offers a validated panel of optimal reference genes for the detection of differentially expressed genes in goat muscle satellite cells using RT-qPCR.

7.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39125816

RESUMEN

Domestic animals have multiple phenotypes of skin and coat color, which arise from different genes and their products, such as proteins and metabolites responsible with melanin deposition. However, the complex regulatory network of melanin synthesis remains to be fully unraveled. Here, the skin and tongue tissues of Liangshan black sheep (black group) and Liangshan semi-fine-wool sheep (pink group) were collected, stained with hematoxylin-eosin (HE) and Masson-Fontana, and the transcriptomic and metabolomic data were further analyzed. We found a large deposit of melanin granules in the epidermis of the black skin and tongue. Transcriptome and metabolome analysis identified 744 differentially expressed genes (DEGs) and 443 differentially expressed metabolites (DEMs) between the pink and black groups. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses revealed the DEGs and DEMs were mainly enriched in the pathways of secondary metabolic processes, melanin biosynthesis processes, melanin metabolism processes, melanosome membranes, pigment granule membranes, melanosome, tyrosine metabolism, and melanogenesis. Notably, we revealed the gene ENSARG00020006042 may be a family member of YWHAs and involved in regulating melanin deposition. Furthermore, several essential genes (TYR, TYRP1, DCT, PMEL, MLANA, SLC45A2) were significantly associated with metabolite prostaglandins and compounds involved in sheep pigmentation. These findings provide new evidence of the strong correlation between prostaglandins and related compounds and key genes that regulate sheep melanin synthesis, furthering our understanding of the regulatory mechanisms and molecular breeding of pigmentation in sheep.


Asunto(s)
Redes Reguladoras de Genes , Melaninas , Pigmentación , Transcriptoma , Animales , Perfilación de la Expresión Génica , Melaninas/metabolismo , Melaninas/biosíntesis , Metaboloma , Metabolómica/métodos , Pigmentación/genética , Ovinos/genética , Ovinos/metabolismo
8.
Microbiome ; 12(1): 104, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845047

RESUMEN

BACKGROUND: Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database. RESULTS: A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation. CONCLUSIONS: By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.


Asunto(s)
Bacterias , Heces , Microbioma Gastrointestinal , Cabras , Mucinas , Polisacáridos , Animales , Cabras/microbiología , Ovinos/microbiología , Mucinas/metabolismo , Polisacáridos/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Heces/microbiología , Metagenoma , Genoma Bacteriano , Metagenómica/métodos , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento
9.
Oncogenesis ; 13(1): 23, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906857

RESUMEN

Lacking effective therapeutic targets heavily restricts the improvement of clinical prognosis for patients diagnosed with esophageal squamous cell carcinoma (ESCC). Ubiquitin Specific Peptidase 21 (USP21) is dysregulated in plenty of human cancers, however, its potential function and relevant molecular mechanisms in ESCC malignant progression as well as its value in clinical translation remain largely unknown. Here, in vitro and in vivo experiments revealed that aberrant upregulation of USP21 accelerated the proliferation and metastasis of ESCC in a deubiquitinase-dependent manner. Mechanistically, we found that USP21 binds to, deubiquitinates, and stabilizes the G3BP Stress Granule Assembly Factor 1 (G3BP1) protein, which is required for USP21-mediated ESCC progression. Further molecular studies demonstrated that the USP21/G3BP1 axis played a tumor-promoting role in ESCC progression by activating the Wnt/ß-Catenin signaling pathway. Additionally, disulfiram (DSF), an inhibitor against USP21 deubiquitylation activity, markedly abolished the USP21-mediated stability of G3BP1 protein and significantly displayed an anti-tumor effect on USP21-driving ESCC progression. Finally, the regulatory axis of USP21/G3BP1 was demonstrated to be aberrantly activated in ESCC tumor tissues and closely associated with advanced clinical stages and unfavorable prognoses, which provides a promising therapeutic strategy targeting USP21/G3BP1 axis for ESCC patients.

10.
Food Res Int ; 189: 114551, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876590

RESUMEN

During the cold chain storage process, changes in metabolites and microorganisms are highly likely to lead to changes in meat quality. To elucidate the changes in the composition of metabolites and microbiota during cold chain storage of mutton, this study utilized untargeted metabolome and 5R 16S rRNA sequencing analyses to investigate the changes in the longissimus dorsi under different cold chain temperatures (4 °C and -20 °C). With the extension of cold chain storage time, the meat color darkened and the content of C18:2n-6, C20:3n-6, and C23:0 were significantly increased in mutton. In this study, nine metabolites, including 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine, alanylphenylala-nine, indole-3-acrylic acid and the others, were significantly altered during cold chain storage. The abundance of the dominant microorganisms, including Brachymonas, Aeromonas, Corynebacterium and Steroidobacter, was significantly altered. Furthermore, a high correlation was observed between the different metabolites and microorganisms. These findings provide an in-depth understanding of the effects of different cold chain storage temperatures and times on the quality of mutton.


Asunto(s)
Frío , Almacenamiento de Alimentos , Almacenamiento de Alimentos/métodos , Animales , Carne/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Microbiología de Alimentos , Microbiota , Metaboloma , Refrigeración
11.
Insect Mol Biol ; 33(4): 312-322, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38767730

RESUMEN

Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3' untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (Apis mellifera L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.


Asunto(s)
Venenos de Abeja , Proteínas de Insectos , MicroARNs , Animales , Abejas/genética , Abejas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Venenos de Abeja/farmacología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Supervivencia Celular , Poliaminas/metabolismo , Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/genética
12.
Genes (Basel) ; 15(3)2024 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-38540389

RESUMEN

ß-1,4-N-acetylgalactosamine transferase 2 (B4GALNT2) is a vital candidate gene that affects the growth traits in sheep. However, whether it has the same function in goats remains to be investigated further. This study selected 348 Nanjiang Yellow goats, screened all exons, and conserved non-coding regions of the B4GALNT2 gene for single-nucleotide polymorphisms (SNPs). Our results revealed the presence of a synonymous mutation, rs672215506, within the exon of the B4GALNT2 gene in the Nanjiang Yellow goat population. The mutation resulted in a decrease in the mRNA stability of the B4GALNT2 gene. The results of SNP detection of the conserved non-coding region of the B4GALNT2 gene showed five potential regulatory SNPs in the Nanjiang Yellow goat population. Except for rs66095343, the ~500 bp fragments of the other four SNPs (rs649127714, rs649573228, rs652899012, and rs639183528) significantly increased the luciferase activity both in goat skeletal muscle satellite cells (MuSCs) and 293T cells. The genetic diversity indexes indicated low or intermediate levels for all six SNPs analyzed, and the genotype frequencies were in Hardy-Weinberg equilibrium. Association analysis showed that rs660965343, rs649127714, and rs649573228 significantly correlate with growth traits in the later stage of growth and development of Nanjiang Yellow goats. The haplotype combinations of H2H3 and H2H2 had higher body weight and greater body size. Moreover, H2H2 haplotype combinations significantly correlated with the litter size of the Nanjiang Yellow goats. The results of our study demonstrate the potential role of the B4GALNT2 gene as a functional genetic marker in the breeding programs of Nanjiang Yellow goats.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Embarazo , Femenino , Animales , Ovinos , Cabras/genética , Polimorfismo de Nucleótido Simple/genética , Genotipo , Haplotipos , Tamaño de la Camada/genética
13.
Domest Anim Endocrinol ; 88: 106847, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38479188

RESUMEN

Cold exposure is a common stressor for newborn goats. Skeletal muscle plays an important role in maintaining whole-body homeostasis of glucose and lipid metabolism. However, the molecular mechanisms underlying regulation of skeletal muscle of newborn goats by cold exposure remains unclear. In this study, we found a significant increase (P < 0.01) in serum glucagon levels after 24 h of cold exposure (COLD, 6°C), while glucose and insulin concentrations were significantly decreased (P < 0.01) compared to room temperature (RT, 25°C). Additionally, we found that cold exposure reduced glycogen content (P < 0.01) in skeletal muscle. Pathway enrichment analysis revealed that cold exposure activated skeletal muscle glucose metabolism pathways (including insulin resistance and the insulin signaling pathway) and mitophagy-related pathways. Cold exposure up-regulated the expression of genes involved in fatty acid and triglyceride synthesis, promoting skeletal muscle lipid deposition. Notably, cold exposure induced mitophagy in skeletal muscle.


Asunto(s)
Animales Recién Nacidos , Frío , Glucosa , Cabras , Mitofagia , Músculo Esquelético , Animales , Cabras/fisiología , Músculo Esquelético/metabolismo , Mitofagia/fisiología , Glucosa/metabolismo , Metabolismo de los Lípidos , Gotas Lipídicas/metabolismo
14.
Animals (Basel) ; 14(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338087

RESUMEN

Understanding the genetic makeup of local sheep breeds is essential for their scientific conservation and sustainable utilization. The Liangshan semi-fine-wool sheep (LSS), a Chinese semi-fine-wool breed renowned for its soft wool, was analyzed using whole-genome sequencing data including 35 LSS, 84 sheep from other domestic breeds, and 20 Asiatic mouflons. We investigated the genetic composition of LSS by conducting analyses of the population structure, runs of homozygosity, genomic inbreeding coefficients, and selection signature. Our findings indicated that LSS shares greater genetic similarity with Border Leicester and Romney sheep than with Tibetan (TIB), Yunnan (YNS), and Chinese Merino sheep. Genomic analysis indicated low to moderate inbreeding coefficients, ranging from 0.014 to 0.154. In identifying selection signals across the LSS genome, we pinpointed 195 candidate regions housing 74 annotated genes (e.g., IRF2BP2, BVES, and ALOX5). We also found the overlaps between the candidate regions and several known quantitative trait loci related to wool traits, such as the wool staple length and wool fiber diameter. A selective sweep region, marked by the highest value of cross-population extended haplotype homozygosity, encompassed IRF2BP2-an influential candidate gene affecting fleece fiber traits. Furthermore, notable differences in genotype frequency at a mutation site (c.1051 + 46T > C, Chr25: 6,784,190 bp) within IRF2BP2 were observed between LSS and TIB and YNS sheep (Fisher's exact test, p < 2.2 × 10-16). Taken together, these findings offer insights crucial for the conservation and breeding enhancement of LSS.

15.
Int J Biol Macromol ; 253(Pt 7): 127341, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37852400

RESUMEN

The elaborate interplay of coding and noncoding factors governs muscle growth and development. Here, we reported a mutual activation between long noncoding RNA (lncRNA) H19 and MyoD (myogenic determination gene number 1) in the muscle process. We successfully cloned the two isoforms of goat H19, which were significantly enriched and positively correlated with MyoD transcripts in skeletal muscles or differentiating muscle satellite cells (MuSCs). To systematically screen genes altered by H19, we performed RNA-seq using cDNA libraries of differentiating H19-deficiency MuSCs and consequently anchored MyoD as the critical genes in mediating H19 function. Intriguingly, some transcripts of MyoD and H19 overlapped in the cytoplasm, which was dramatically damaged when the core complementary nucleotides were mutated. Meanwhile, MyoD RNA successfully pulled down H19 in MS2-RIP experiments. Furthermore, HuR could bind both H19 and MyoD transcripts, while H19 or its truncated mutants successfully stabilized MyoD mRNA, with or without HuR deficiency. In turn, novel functional MyoD protein-binding sites were identified in the promoter and exons of the H19 gene. Our results suggest that MyoD activates H19 transcriptionally, and RNA-RNA hybridization is critical for H19-promoted MyoD expression, which extends our knowledge of the hierarchy of regulatory networks in muscle growth.


Asunto(s)
ARN Largo no Codificante , Células Satélite del Músculo Esquelético , Animales , Células Satélite del Músculo Esquelético/metabolismo , Cabras/genética , Cabras/metabolismo , Diferenciación Celular/genética , Músculo Esquelético/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
16.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762418

RESUMEN

The development of mammalian skeletal muscle is a highly complex process involving multiple molecular interactions. As a prevalent RNA modification, N6-methyladenosine (m6A) regulates the expression of target genes to affect mammalian development. Nevertheless, it remains unclear how m6A participates in the development of goat muscle. In this study, methyltransferase 3 (METTL3) was significantly enriched in goat longissimus dorsi (LD) tissue. In addition, the global m6A modification level and differentiation of skeletal muscle satellite cells (MuSCs) were regulated by METTL3. By performing mRNA-seq analysis, 8050 candidate genes exhibited significant changes in expression level after the knockdown of METTL3 in MuSCs. Additionally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that myocyte enhancer factor 2c (MEF2C) mRNA contained m6A modification. Further experiments demonstrated that METTL3 enhanced the differentiation of MuSCs by upregulating m6A levels and expression of MEF2C. Moreover, the m6A reader YTH N6-methyladenosine RNA binding protein C1 (YTHDC1) was bound and stabilized to MEF2C mRNA. The present study reveals that METTL3 enhances myogenic differentiation in MuSCs by regulating MEF2C and provides evidence of a post-transcriptional mechanism in the development of goat skeletal muscle.

17.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511183

RESUMEN

Diarrhea is associated with gut microbiota, immunity, and metabolic alterations in goat kids and lambs. This study used 28 lambs (11 healthy and 17 diarrheic) and 20 goat kids (10 healthy and 10 diarrheic) to investigate the association between diarrhea occurrence and changes in gut microbiota, metabolism, and immunity in goat kids and lambs. The results revealed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in goat kids and lambs. In addition, Enterobacteriaceae and Lachnospiraceae families were identified in both diarrheic goat kids and lambs. Furthermore, functional prediction of microbiota showed that it was involved in cell motility and cancer pathways. The identified differential metabolites were implicated in the bile secretion pathway. Lambs had significant differences in immunoglobulin G (IgG), immunoglobulin M (IgM), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α) compared to goat kids. IgG and IL-1ß were positively correlated to Patescibacteria, Clostridiaceae, and unclassified_Muribaculaceae in both diarrheic goat kids and lambs. In addition, weighted gene co-expression network analysis (WGCNA) revealed that the MEgreen module was positively associated with IgG, IgM, IL-1ß, TNF-α, and triglyceride (TG). In conclusion, our results characterized the gut microbiota, metabolism, and immune status of lambs and goat kids suffering from diarrhea.


Asunto(s)
Microbioma Gastrointestinal , Ovinos , Animales , ARN Ribosómico 16S/genética , Factor de Necrosis Tumoral alfa , Diarrea/microbiología , Cabras , Metabolómica , Inmunoglobulina G
18.
Int J Biol Macromol ; 245: 125465, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37355065

RESUMEN

Brown and beige adipose thermogenesis are important for newborn mammals to maintain their body temperature. In addition, these thermogenic fats are regulated by multiple molecular interactions. How the long non-coding RNAs (lncRNAs) regulate adipose thermogenesis in newborn mammals upon cold exposure remains unexplored. Here, we identified lncRNAs induced by cold exposure in brown adipose tissue (BAT) of newborn goats and found that lncDGAT2 was enriched in BAT after cold exposure. Functional studies revealed that lncDGAT2 promoted brown and white adipocyte differentiation as well as thermogenic gene expression. Additionally, PRDM4 directly bound the lncDGAT2 promoter to activate the transcription of lncDGAT2 and the PRDM4-lncDGAT2 axis was essential for the brown adipocyte thermogenic gene program. These findings provide evidence for lncRNA and transcription factor regulatory functions in controlling adipose thermogenesis and energy metabolism of newborn goats.


Asunto(s)
Cabras , ARN Largo no Codificante , Animales , Cabras/genética , Cabras/metabolismo , ARN Largo no Codificante/genética , Tejido Adiposo Pardo/metabolismo , Adipocitos Marrones/metabolismo , Factores de Transcripción/genética , Termogénesis/genética , Tejido Adiposo Blanco/metabolismo , Frío
19.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176056

RESUMEN

Muscle growth and injury-induced regeneration are controlled by skeletal muscle satellite cells (MuSCs) through myogenesis in postnatal animals. Meanwhile, myogenesis is accompanied by mitochondrial function and enzyme activity. Nevertheless, the underlying molecular mechanisms involving non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) remain largely unsolved. Here, we explored the myogenic roles of miR-145-3p and MYBL1 on muscle development and mitochondrial mass. We noticed that overexpression of miR-145-3p inhibited MuSCs proliferation and reduced the number of viable cells. Meanwhile, deficiency of miR-145-3p caused by LNAantimiR-145-3p or an inhibitor retarded the differentiation of MuSCs. miR-145-3p altered the mitochondrial mass in MuSCs. Moreover, miR-145-3p targeted and negatively regulated the expression of CDR1as and MYBL1. The knockdown of the MYBL1 using ASO-2'MOE modification simulated the inhibitory function of miR-145-3p on cell proliferation. Additionally, MYBL1 mediated the regulation of miR-145-3p on Vexin, VCPIP1, COX1, COX2, and Pax7. These imply that CDR1as/miR-145-3p/MYBL1/COX1, COX2, VCPIP1/Vexin expression at least partly results in a reduction in mitochondrial mass and MuSCs proliferation. These novel findings confirm the importance of mitochondrial mass during myogenesis and the boosting of muscle/meat development in mammals.


Asunto(s)
Cabras , MicroARNs , Animales , Cabras/genética , Cabras/metabolismo , Ciclooxigenasa 2 , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/genética
20.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108057

RESUMEN

Human antigen R (HuR) is an RNA-binding protein that contributes to a wide variety of biological processes and diseases. HuR has been demonstrated to regulate muscle growth and development, but its regulatory mechanisms are not well understood, especially in goats. In this study, we found that HuR was highly expressed in the skeletal muscle of goats, and its expression levels changed during longissimus dorsi muscle development in goats. The effects of HuR on goat skeletal muscle development were explored using skeletal muscle satellite cells (MuSCs) as a model. The overexpression of HuR accelerated the expression of myogenic differentiation 1 (MyoD), Myogenin (MyoG), myosin heavy chain (MyHC), and the formation of myotubes, while the knockdown of HuR showed opposite effects in MuSCs. In addition, the inhibition of HuR expression significantly reduced the mRNA stability of MyoD and MyoG. To determine the downstream genes affected by HuR at the differentiation stage, we conducted RNA-Seq using MuSCs treated with small interfering RNA, targeting HuR. The RNA-Seq screened 31 upregulated and 113 downregulated differentially expressed genes (DEGs) in which 11 DEGs related to muscle differentiation were screened for quantitative real-time PCR (qRT-PCR) detection. Compared to the control group, the expression of three DEGs (Myomaker, CHRNA1, and CAPN6) was significantly reduced in the siRNA-HuR group (p < 0.01). In this mechanism, HuR bound to Myomaker and increased the mRNA stability of Myomaker. It then positively regulated the expression of Myomaker. Moreover, the rescue experiments indicated that the overexpression of HuR may reverse the inhibitory impact of Myomaker on myoblast differentiation. Together, our findings reveal a novel role for HuR in promoting muscle differentiation in goats by increasing the stability of Myomaker mRNA.


Asunto(s)
Células Satélite del Músculo Esquelético , Animales , Humanos , Células Satélite del Músculo Esquelético/metabolismo , Cabras/genética , Diferenciación Celular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , ARN Interferente Pequeño/metabolismo , Desarrollo de Músculos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA