Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
2.
Nature ; 630(8017): 631-635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811739

RESUMEN

The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.

3.
Opt Express ; 32(5): 7774-7782, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439450

RESUMEN

Using cascaded Mach-Zehnder interferometers (CMZIs) provides an attractive option for realizing coarse wavelength-division (de)multiplexing (CWDM) filters with low losses, low crosstalk, flat tops, and high scalability. However, they usually have large footprints and insufficient fabrication tolerances, due to the inferior performance of conventional directional couplers (DCs) used for MZIs. Here, a four-channel CMZI wavelength-division (de)multiplexer based on novel Bezier-shape DCs with compact footprints, broad bandwidths and decent fabrication tolerances. For the fabricated (de)multiplexer with 20-nm channel spacing, the excess loss is less than 0.5 dB and the crosstalk is lower than -19.5 dB in the 1-dB bandwidth of 12.8 nm. For the case with a core-width deviation of ±20 nm, the device still performs very well with low losses and low crosstalk. Compared to the state-of-the-art MZI-based CWDM filters, the present device has slightly high performances and a footprint of 0.012 mm2 shrunk greatly by ∼3-folds. This work can be extended for more channels and other material platforms.

4.
Chem Res Toxicol ; 37(2): 302-310, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38231175

RESUMEN

Endogenous electrophiles, ionizing and non-ionizing radiation, and hazardous chemicals present in the environment and diet can damage DNA by forming covalent adducts. DNA adducts can form in critical cancer driver genes and, if not repaired, may induce mutations during cell division, potentially leading to the onset of cancer. The detection and quantification of specific DNA adducts are some of the first steps in studying their role in carcinogenesis, the physiological conditions that lead to their production, and the risk assessment of exposure to specific genotoxic chemicals. Hundreds of different DNA adducts have been reported in the literature, and there is a critical need to establish a DNA adduct mass spectral database to facilitate the detection of previously observed DNA adducts and characterize newly discovered DNA adducts. We have collected synthetic DNA adduct standards from the research community, acquired MSn (n = 2, 3) fragmentation spectra using Orbitrap and Quadrupole-Time-of-Flight (Q-TOF) MS instrumentation, processed the spectral data and incorporated it into the MassBank of North America (MoNA) database, and created a DNA adduct portal Web site (https://sites.google.com/umn.edu/dnaadductportal) to serve as a central location for the DNA adduct mass spectra and metadata, including the spectral database downloadable in different formats. This spectral library should prove to be a valuable resource for the DNA adductomics community, accelerating research and improving our understanding of the role of DNA adducts in disease.


Asunto(s)
Aductos de ADN , ADN , Humanos , ADN/química , Espectrometría de Masas , Daño del ADN , Carcinogénesis
5.
Opt Lett ; 48(19): 4961-4964, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773360

RESUMEN

Integrated optical filters are key components in various photonic integrated circuits for applications of communication, spectroscopy, etc. The dichroic filters can be flexibly cascaded to construct filters with various channel numbers and bandwidths. Therefore, the development of high-performance and compact dichroic filters is crucial. In this work, we develop the dichroic filters with 1.49/1.55-µm channels by an inverse design. Benefiting from a search-space-dimension control strategy and advanced optimization algorithm, our efficient design method results in two high-performance dichroic filters without and with subwavelength gratings (SWGs). The comparison suggests that SWGs in filters can be useful for loss reduction and footprint compression by dispersion engineering. The developed dichroic filter with SWGs exhibits measured bandwidths of 26/29 nm, excess losses of < 0.5 dB, and crosstalks of <-10 dB with a compact footprint of 2.5 × 22.0 µm2. It has advantages in performance or compactness compared to the previously reported counterparts. A triplexer with a footprint of 10.5 × 117 µm2 is developed based on the dichroic filters, also showing decent overall performance and compactness.

6.
Adv Mater ; : e2207301, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36524445

RESUMEN

Bright and efficient deep-red light-emitting diodes (LEDs) are important for applications in medical therapy and biological imaging due to the high penetration of deep-red photons into human tissues. Metal-halide perovskites have potential to achieve bright and efficient electroluminescence due to their favorable optoelectronic properties. However, efficient and bright perovskite-based deep-red LEDs have not been achieved yet, due to either Auger recombination in low-dimensional perovskites or trap-assisted nonradiative recombination in 3D perovskites. Here, a lateral Cs4 PbI6 /FAx Cs1- x PbI3 (0D/3D) heterostructure that can enable efficient deep-red perovskite LEDs at very high brightness is demonstrated. The Cs4 PbI6 can facilitate the growth of low-defect FAx Cs1- x PbI3 , and act as low-refractive-index grids, which can simultaneously reduce nonradiative recombination and enhance light extraction. This device reaches a peak external quantum efficiency of 21.0% at a photon flux of 1.75 × 1021 m-2 s-1 , which is almost two orders of magnitude higher than that of reported high-efficiency deep-red perovskite LEDs. Theses LEDs are suitable for pulse oximeters, showing an error <2% of blood oxygen saturation compared with commercial oximeters.

7.
ACS Omega ; 7(17): 14591-14610, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35557656

RESUMEN

Recently, deep shale reservoirs are emerging as time requires and commence occupying a significant position in the further development of shale gas. However, the understanding of pore characteristics in deep shale remains poor, prohibiting accurate estimation of the hydrocarbon content and insights into fluid mobility. This study focuses on the Longmaxi Formation from the Luzhou (LZ) region, southern Sichuan. Scanning electron microscopy (SEM), low-temperature N2/CO2 adsorption, X-ray diffraction, and geochemical analysis were performed to investigate the micro-nanopore size distribution, main controlling factors, and unique pore features distinct from other regions. Results showed that the pores can be classified into four categories, organic matter (OM) pores, intergranular pores, intragranular pores, and microfractures, according to SEM images. The total pore volume is overwhelmingly dominated by mesopores and contributed by pores in the range of 0.5-0.6, 2-4, and 10-30 nm. The specific surface area is primarily contributed by micropores and mesopores in the range of 0.5-0.7 and 2-4 nm. By analyzing the influencing factors extensively, it is concluded that the buried depth, geochemical factors, and mineral composition can impact the pore structure in the overmature deep shales. Specifically, the total organic carbon content plays a more effective and positive role in the development of micropores, mesopores, total pores, and the porosity when compared with vitreous reflectance (Ro). The micropores are inferred to be OM-related. On the contrary, clay mineral is detrimental to the development of micropores and mesopores and the petrophysical properties (porosity and permeability), which may be attributed to the occurrence of chlorite and kaolinite instead of illite. The plagioclase conforms to the same law as clay due to their coexistence. Quartz, carbonate minerals, and pyrite can barely contribute to the pores. Eventually, the compared results suggest that the Longmaxi Formation of the LZ region are qualified with a superior pore size distribution, complicated structure, and diverse morphology, implying a potential to generate and store hydrocarbons. Overall, this study improves the understanding of complex pore structures in deep shale and provides significant insights into the development and exploration of unconventional resources in the future.

8.
Chem Res Toxicol ; 35(5): 703-730, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35446561

RESUMEN

Well-done cooked red meat consumption is linked to aggressive prostate cancer (PC) risk. Identifying mutation-inducing DNA adducts in the prostate genome can advance our understanding of chemicals in meat that may contribute to PC. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic aromatic amine (HAA) formed in cooked meat, is a potential human prostate carcinogen. PhIP was measured in the hair of PC patients undergoing prostatectomy, bladder cancer patients under treatment for cystoprostatectomy, and patients treated for benign prostatic hyperplasia (BPH). PhIP hair levels were above the quantification limit in 123 of 205 subjects. When dichotomizing prostate pathology biomarkers, the geometric mean PhIP hair levels were higher in patients with intermediate and elevated-risk prostate-specific antigen values than lower-risk values <4 ng/mL (p = 0.03). PhIP hair levels were also higher in patients with intermediate and high-risk Gleason scores ≥7 compared to lower-risk Gleason score 6 and BPH patients (p = 0.02). PC patients undergoing prostatectomy had higher PhIP hair levels than cystoprostatectomy or BPH patients (p = 0.02). PhIP-DNA adducts were detected in 9.4% of the patients assayed; however, DNA adducts of other carcinogenic HAAs, and benzo[a]pyrene formed in cooked meat, were not detected. Prostate specimens were also screened for 10 oxidative stress-associated lipid peroxidation (LPO) DNA adducts. Acrolein 1,N2-propano-2'-deoxyguanosine adducts were detected in 54.5% of the patients; other LPO adducts were infrequently detected. Acrolein adducts were not associated with prostate pathology biomarkers, although DNA adductomic profiles differed between PC patients with low and high-grade Gleason scores. Many DNA adducts are of unknown origin; however, dG adducts of formaldehyde and a series of purported 4-hydroxy-2-alkenals were detected at higher abundance in a subset of patients with elevated Gleason scores. The PhIP hair biomarker and DNA adductomics data support the paradigm of well-done cooked meat and oxidative stress in aggressive PC risk.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Acroleína , Biomarcadores , Carcinógenos/análisis , ADN , Aductos de ADN , Cabello/química , Humanos , Masculino , Carne/efectos adversos , Carne/análisis , Piridinas , Dosímetros de Radiación
9.
Light Sci Appl ; 10(1): 123, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108443

RESUMEN

Two-dimensional materials (2DMs) have been used widely in constructing photodetectors (PDs) because of their advantages in flexible integration and ultrabroad operation wavelength range. Specifically, 2DM PDs on silicon have attracted much attention because silicon microelectronics and silicon photonics have been developed successfully for many applications. 2DM PDs meet the imperious demand of silicon photonics on low-cost, high-performance, and broadband photodetection. In this work, a review is given for the recent progresses of Si/2DM PDs working in the wavelength band from near-infrared to mid-infrared, which are attractive for many applications. The operation mechanisms and the device configurations are summarized in the first part. The waveguide-integrated PDs and the surface-illuminated PDs are then reviewed in details, respectively. The discussion and outlook for 2DM PDs on silicon are finally given.

10.
Anal Chem ; 93(16): 6491-6500, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33844920

RESUMEN

A novel software has been created to comprehensively characterize covalent modifications of DNA through mass spectral analysis of enzymatically hydrolyzed DNA using the neutral loss of 2'-deoxyribose, a nearly universal MS2 fragmentation process of protonated 2'-deoxyribonucleosides. These covalent modifications termed DNA adducts form through xenobiotic exposures or by reaction with endogenous electrophiles and can induce mutations during cell division and initiate carcinogenesis. DNA adducts are typically present at trace levels in the human genome, requiring a very sensitive and comprehensive data acquisition and analysis method. Our software, wSIM-City, was created to process mass spectral data acquired by a wide selected ion monitoring (wSIM) with gas-phase fractionation and coupled to wide MS2 fragmentation. This untargeted approach can detect DNA adducts at trace levels as low as 1.5 adducts per 109 nucleotides. This level of sensitivity is sufficient for comprehensive analysis and characterization of DNA modifications in human specimens.


Asunto(s)
Aductos de ADN , ADN , Espectrometría de Masa por Ionización de Electrospray , Humanos , Espectrometría de Masas , Nucleótidos , Xenobióticos
11.
Artículo en Inglés | MEDLINE | ID: mdl-35342792

RESUMEN

Dietary exposure to 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) in cooked meats maybe responsible for the high burden of Esophageal squamous cell carcinoma (ESCC) in southwestern Uganda. We conducted a pilot case-control study among 31 histologically confirmed ESCC cases and 54 age, gender, and residence matched healthy community controls sampled from the general population at the time of accrual of each case in southwestern Uganda. We collected data including smoking, alcohol consumption, diet, and scalp hair samples analyzed for normalized PhlP (adjusted per gram of melanin). We used logistic regression to determine the association of PhlP and ESCC. Overall, the mean normalized PhIP (ng/g melanin) was 44.79 (SD 148.08), higher among women compared to men (130.68 vs. 9.00, p = 0.03), lowest among healthy men [8.31 (SD 8.52) ng/g melanin] and highest among healthy women 158.39 (SD 288.75) ng/g melanin. In fully adjusted models, covariates associated with greater odds of ESCC included ever smoking 2 to 3 pack years of cigarettes (aOR 7.75 (95% CI 1.90, 31.50) and those 3 or more pack years (aOR5.82, 95%CI 1.25, 27.11), drinking 3 to 4 alcoholic drinks daily (aOR8.00, 95%CI 2.31, 27.74), and normalized PhIP above 75th percentile (8.65 ng/g of melanin) (aOR4.27, 95%CI 1.12, 16.24). In conclusion, high PhIP levels maybe associated with ESCC in a rural Uganda, a high ESCC burden setting. Further study with larger sample with a wider geographical representation is needed to validate scalp hair PhIP for assessment of ESCC risk.

12.
Opt Express ; 28(8): 10725-10736, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403597

RESUMEN

Graphene has emerged as a promising solution for on-chip ultrafast photodetection for its advantages of easy integration, high mobility, adjustable chemical potential, and wide operation wavelength range. In order to realize high-performance photodetectors, it is very important to achieve efficient light absorption in the active region. In this work, a compact and high-speed hybrid silicon/graphene photodetector is proposed and demonstrated by utilizing an ultra-thin silicon photonic waveguide integrated with a loop mirror. With this design, the graphene absorption rate for the fundamental mode of TE polarization is improved by ∼5 times compared to that in the conventional hybrid silicon/graphene waveguide with hco=220 nm. One can achieve 80% light absorption ratio within the active-region length of only 20 µm for the present silicon/graphene waveguide photodetector at 1550 nm. For the fabricated device, the responsivity is about 25 mA/W under 0.3V bias voltage and the 3-dB bandwidth is about 17 GHz. It is expected to achieve very high bandwidth by introducing high-quality Al2O3 insulator layers and reducing the graphene channel length in the future.

13.
Bioact Mater ; 5(3): 435-446, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32280833

RESUMEN

Osteoporosis bone defect is a refractory orthopaedic disease which characterized by impaired bone quality and bone regeneration capacity. Current therapies, including antiosteoporosis drugs and artificial bone grafts, are not always satisfactory. Herein, a strontium-substituted calcium phosphate silicate bioactive ceramic (Sr-CPS) was fabricated. In the present study, the extracts of Sr-CPS were prepared for in vitro study and Sr-CPS scaffolds were used for in vivo study. The cytocompatibility, osteogenic and osteoclastogenic properties of Sr-CPS extracts were characterized in comparison to CPS. Molecular mechanisms were also evaluated by Western blot. Sr-CPS extracts were found to promote osteogenesis by upregulating Wnt/ß-catenin signal pathways and inhibit osteoclastogenesis through downregulating NF-κB signal pathway. In vivo, micro-CT, histological and histomorphometric observation were conducted after 8 weeks of implantation to evaluate the bone formation using calvarial defects model in ovariectomized rats. Compared with CPS, Sr-CPS significantly promoted critical sized ovariectomy (OVX) calvarial defects healing. Among all the samples, Sr-10 showed the best performance due to a perfect match of bone formation and scaffold degradation rates. Overall, the present study demonstrated that Sr-CPS ceramic can dually modulate both bone formation and resorption, which might be a promising candidate for the reconstruction of osteoporotic bone defect.

14.
Chem Res Toxicol ; 33(4): 852-854, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32223224

RESUMEN

Mass spectrometry-based DNA adductomics is an emerging approach for the human biomonitoring of hazardous chemicals. A mass spectral database of DNA adducts will be created for the scientific community to investigate the associations between chemical exposures, DNA damage, and disease risk.


Asunto(s)
Aductos de ADN/efectos de los fármacos , Bases de Datos de Compuestos Químicos , Contaminantes Ambientales/farmacología , Compuestos Orgánicos/farmacología , Daño del ADN , Contaminantes Ambientales/química , Humanos , Espectrometría de Masas , Compuestos Orgánicos/química
15.
Light Sci Appl ; 9: 29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140220

RESUMEN

Graphene has attracted much attention for the realization of high-speed photodetection for silicon photonics over a wide wavelength range. However, the reported fast graphene photodetectors mainly operate in the 1.55 µm wavelength band. In this work, we propose and realize high-performance waveguide photodetectors based on bolometric/photoconductive effects by introducing an ultrathin wide silicon-graphene hybrid plasmonic waveguide, which enables efficient light absorption in graphene at 1.55 µm and beyond. When operating at 2 µm, the present photodetector has a responsivity of ~70 mA/W and a setup-limited 3 dB bandwidth of >20 GHz. When operating at 1.55 µm, the present photodetector also works very well with a broad 3 dB bandwidth of >40 GHz (setup-limited) and a high responsivity of ~0.4 A/W even with a low bias voltage of -0.3 V. This work paves the way for achieving high-responsivity and high-speed silicon-graphene waveguide photodetection in the near/mid-infrared ranges, which has applications in optical communications, nonlinear photonics, and on-chip sensing.

16.
Mass Spectrom Rev ; 39(1-2): 55-82, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29889312

RESUMEN

Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.


Asunto(s)
Aductos de ADN/análisis , Espectrometría de Masas/métodos , Animales , Biopsia , Cromatografía Liquida/métodos , Aductos de ADN/genética , Humanos , Mutación , Neoplasias/genética
17.
Int J Biol Macromol ; 142: 835-845, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31622721

RESUMEN

Tendon repair was an important part during tendon to bone healing. In the present study, heparin molecules were immobilized on the aminolyzed PCL surface to improve the cellular bioactivity for potential tendon repair. The effects of heparin immobilization on protein adsorption behavior and cellular bioactivity of NIH3T3 and ATDC5 cells were investigated. The results were shown as follows.


Asunto(s)
Materiales Biocompatibles/química , Heparina/química , Cemento de Policarboxilato/química , Tendones/metabolismo , Andamios del Tejido/química , Aminas/química , Animales , Materiales Biocompatibles/metabolismo , Regeneración Ósea , Adhesión Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Colágeno/química , Colágeno/metabolismo , Glicosaminoglicanos/química , Heparina/metabolismo , Membranas Artificiales , Ratones , Osteogénesis , Propiedades de Superficie , Ingeniería de Tejidos
18.
Chem Res Toxicol ; 32(11): 2156-2168, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31549505

RESUMEN

Frequent exposure to chemicals in the environment, diet, and endogenous electrophiles leads to chemical modification of DNA and the formation of DNA adducts. Some DNA adducts can induce mutations during cell division and, when occurring in critical regions of the genome, can lead to the onset of disease, including cancer. The targeted analysis of DNA adducts over the past 30 years has revealed that the human genome contains many types of DNA damages. However, a long-standing limitation in conducting DNA adduct measurements has been the inability to screen for the total complement of DNA adducts derived from a wide range of chemicals in a single assay. With the advancement of high-resolution mass spectrometry (MS) instrumentation and new scanning technologies, nontargeted "omics" approaches employing data-dependent acquisition and data-independent acquisition methods have been established to simultaneously screen for multiple DNA adducts, a technique known as DNA adductomics. However, notable challenges in data processing must be overcome for DNA adductomics to become a mature technology. DNA adducts occur at low abundance in humans, and current softwares do not reliably detect them when using common MS data acquisition methods. In this perspective, we discuss contemporary computational tools developed for feature finding of MS data widely utilized in the disciplines of proteomics and metabolomics and highlight their limitations for conducting nontargeted DNA-adduct biomarker discovery. Improvements to existing MS data processing software and new algorithms for adduct detection are needed to develop DNA adductomics into a powerful tool for the nontargeted identification of potential cancer-causing agents.


Asunto(s)
Aductos de ADN , Biomarcadores , Biología Computacional , Análisis de Datos , Humanos , Espectrometría de Masas , Flujo de Trabajo , Xenobióticos/toxicidad
19.
Chem Res Toxicol ; 32(9): 1850-1862, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31361128

RESUMEN

Reactive oxygen species (ROS) and chronic inflammation contribute to DNA damage of many organs, including the prostate. ROS cause oxidative damage to biomolecules, such as lipids, proteins, and nucleic acids, resulting in the formation of toxic and mutagenic intermediates. Lipid peroxidation (LPO) products covalently adduct to DNA and can lead to mutations. The levels of LPO DNA adducts reported in humans range widely. However, a large proportion of the DNA adducts may be attributed to artifact formation during the steps of isolation and nuclease digestion of DNA. We established a method that mitigates artifacts for most LPO adducts during the processing of DNA. We have applied this methodology to measure LPO DNA adducts in the genome of prostate cancer patients, employing ultrahigh-performance liquid chromatography electrospray ionization ion trap multistage mass spectrometry. Our preliminary data show that DNA adducts of acrolein, 6-hydroxy-1,N2-propano-2'-deoxyguanosine (6-OH-PdG) and 8-hydroxy-1,N2-propano-2'-deoxyguanosine (8-OH-PdG) (4-20 adducts per 107 nucleotides) are more prominent than etheno (ε) adducts (<0.5 adducts per 108 nucleotides). This analytical methodology will be used to examine the correlation between oxidative stress, inflammation, and LPO adduct levels in patients with benign prostatic hyperplasia and prostate cancer.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Aductos de ADN/análisis , Peroxidación de Lípido , Peróxidos Lipídicos/química , Neoplasias de la Próstata/genética , Espectrometría de Masas en Tándem/métodos , Anciano , Métodos Analíticos de la Preparación de la Muestra/métodos , Animales , Antioxidantes/química , Artefactos , Aductos de ADN/química , Aductos de ADN/aislamiento & purificación , Genoma , Genómica , Humanos , Masculino , Persona de Mediana Edad , Próstata/química , Ratas Endogámicas F344
20.
Dent Mater ; 35(9): 1254-1263, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31201018

RESUMEN

OBJECTIVES: To fabricate polymer-infiltrated silicon nitride composite (PISNC) and evaluate the potential of PISNC in dental application. METHODS: Porous silicon nitride (Si3N4) ceramics were fabricated through gelcasting and pressureless sintering. Polymer infiltrating was carried out then and composites were obtained after curing of polymer. Flexural strength and microstructures of porous ceramic scaffolds and polymer-infiltrated composites were obtained by three-point bending and SEM, respectively. Phase distributions of polymer-infiltrated ceramics were observed by EDS. Human gingival fibroblast cells (HGFs) were used to evaluate the cytocompatibility and IL-6 release. The cell morphology were observed by SEM. The amount of released IL-6 was investigated using ELISA test system. RESULTS: Porosity and mechanical strength of porous ceramics ranged from 45.1 to 49.3% and 171.8-262.3MPa, respectively. The bicontinuous structure of polymer-infiltrated composites possessed them with excellent mechanical properties. Porosity and mechanical strength of polymer-infiltrated Si3N4 composites ranged from 1.94 to 2.28% and 273-385.3MPa, respectively. Additionally, the PISNC enhanced the initial adhesion and spreading activity of HGFs compared with PMMA. The PISNC showed similar IL-6 release performance with PMMA samples. SIGNIFICANCES: The PISNC is a promising candidate for dental restorations and high-load medical applications.


Asunto(s)
Cerámica , Polímeros , Humanos , Ensayo de Materiales , Compuestos de Silicona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA