Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Ethnopharmacol ; 334: 118584, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019418

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fuzheng-Qushi decoction (FZQS) is a practical Chinese herbal formula for relieving cough and fever. Therefore, the action and specific molecular mechanism of FZQS in the treatment of lung injury with cough and fever as the main symptoms need to be further investigated. AIMS OF THE STUDY: To elucidate the protective effects of FZQS against lung injury in mice and reveal its potential targets and key biological pathways for the treatment of lung injury based on transcriptomics, microbiomics, and untargeted metabolomics analyses. MATERIALS AND METHODS: Lipopolysaccharide (LPS) was used to induce a mouse model of lung injury, followed by the administration of FZQS. ELISA was used to detect IL-1ß, IL-6, IL-17A, IL-4, IL-10, and TNF-α, in mouse lung tissues. Macrophage polarization and neutrophil activation were measured by flow cytometry. RNA sequencing (RNA-seq) was applied to screen for differentially expressed genes (DEGs) in lung tissues. RT-qPCR and Western blot assays were utilized to validate key DEGs and target proteins in lung tissues. 16S rRNA sequencing was employed to characterize the gut microbiota of mice. Metabolites in the gut were analyzed using untargeted metabolomics. RESULTS: FZQS treatment significantly ameliorated lung histopathological damage, decreased pro-inflammatory cytokine levels, and increased anti-inflammatory cytokine levels. M1 macrophage levels in the peripheral blood decreased, M2 macrophage levels increased, and activated neutrophils were inhibited in mice with LPS-induced lung injury. Importantly, transcriptomic analysis showed that FZQS downregulated macrophage and neutrophil activation and migration and adhesion pathways by reversing 51 DEGs, which was further confirmed by RT-qPCR and Western blot analysis. In addition, FZQS modulated the dysbiosis of the gut microbiota by reversing the abundance of Corynebacterium, Facklamia, Staphylococcus, Paenalcaligenes, Lachnoclostridium, norank_f_Muribaculaceae, and unclassified_f_Lachnospiraceae. Meanwhile, metabolomics analysis revealed that FZQS significantly regulated tryptophan metabolism by reducing the levels of 3-Indoleacetonitrile and 5-Hydroxykynurenine. CONCLUSION: FZQS effectively ameliorated LPS-induced lung injury by inhibiting the activation, migration, and adhesion of macrophages and neutrophils and modulating gut microbiota and its metabolites.


Asunto(s)
Medicamentos Herbarios Chinos , Lipopolisacáridos , Lesión Pulmonar , Metabolómica , Animales , Medicamentos Herbarios Chinos/farmacología , Ratones , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/metabolismo , Lesión Pulmonar/inducido químicamente , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Citocinas/metabolismo , Modelos Animales de Enfermedad , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo
2.
Photochem Photobiol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504445

RESUMEN

Fish collagen peptide (FCP) has been extensively investigated as a natural product that can combat photoaging; however, its efficacy is limited by its singular composition. Compound collagen peptide powder (CCPP) is a novel functional food formulation that exhibits photoprotective properties and comprises FCP and a blend of natural botanical ingredients. The objective of this study was to investigate the efficacy of CCPP and its molecular mechanism. CCPP had a low molecular weight, facilitating its efficient absorption, and was abundant in amino acids, total polyphenols, and total flavonoids. The results of in vivo studies demonstrated that CCPP exhibited significant efficacy in reducing skin wrinkles, enhancing the contents of water and oil in the skin, and ameliorating histopathological alterations in mice. The results of in vitro studies demonstrated that CCPP effectively mitigated photoaging in human skin fibroblasts by attenuating oxidative stress and promoting extracellular matrix (ECM) synthesis. Moreover, we clearly demonstrated that the TGF ß1/Smad pathway was involved in the promotion of ECM synthesis and cell proliferation by CCPP in human skin fibroblasts. These findings suggest that, compared with single collagen, CCPP has a more comprehensive range of antiphotoaging properties.

3.
World J Gastroenterol ; 29(45): 5988-6016, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38130997

RESUMEN

BACKGROUND: Traditional Chinese medicine has used the drug Pien Tze Huang (PTH), a classic prescription, to treat autoimmune hepatitis (AIH). However, the precise mode of action is still unknown. AIM: To investigate the mechanism of PTH in an AIH mouse model by determining the changes in gut microbiota structure and memory regulatory T (mTreg) cells functional levels. METHODS: Following induction of the AIH mouse model induced by Concanavalin A (Con A), prophylactic administration of PTH was given for 10 d. The levels of mTreg cells were measured by flow cytometry, and intestinal microbiota was analyzed by 16S rRNA analysis, while western blotting was used to identify activation of the toll-like receptor (TLR)2, TLR4/nuclear factor-κB (NF-κB), and CXCL16/CXCR6 signaling pathways. RESULTS: In the liver of mice with AIH, PTH relieved the pathological damage and reduced the numbers of T helper type 17 cells and interferon-γ, tumor necrosis factor-alpha, interleukin (IL)-1ß, IL-2, IL-6, and IL-21 expression. Simultaneously, PTH stimulated the abundance of helpful bacteria, promoted activation of the TLR2 signal, which may enhance Treg/mTreg cells quantity to produce IL-10, and suppressed activation of the TLR4/NF-κB and CXCL16/CXCR6 signaling pathways. CONCLUSION: PTH regulates intestinal microbiota balance and restores mTreg cells to alleviate experimental AIH, which is closely related to the TLR/CXCL16/CXCR6/NF-κB signaling pathway.


Asunto(s)
Microbioma Gastrointestinal , Hepatitis A , Hepatitis Autoinmune , Ratones , Animales , Hepatitis Autoinmune/tratamiento farmacológico , Hepatitis Autoinmune/etiología , Hepatitis Autoinmune/prevención & control , FN-kappa B/metabolismo , Linfocitos T Reguladores/metabolismo , Concanavalina A , Receptor Toll-Like 4/metabolismo , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA