Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 597
Filtrar
1.
J Agric Food Chem ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39392110

RESUMEN

Cascade conversion of chitin into soluble and functional chitooligosaccharides has gained great attention. However, the biotransformation route is still limited to the low catalytic performances of chitin deacetylases (CDAs) and complicated procedures. In this study, a CDA from Arthrobacter sp. Jub115 (ArCDA) was identified and characterized, which showed a higher catalytic stability than the reported CDAs, with residual activity of 80.49%, 71.12%, and 56.09% after incubation at 30, 35, and 40 °C for 24 h, respectively. Additionally, ArCDA was identified to have a broad substrate spectrum toward ß-chitin and N-acetyl chitooligosaccharides. Moreover, an engineered chitin-degrading bacteria (CDB) with cell-surface-displayed deacetylase ArCDA and chitinase SaChiB was constructed to simplify catalysis procedures, facilitating the chitobiose production of 294.30 ± 16.43 mg/L in 10 h. This study not only identified a CDA with the desirable catalytic performance but also provided a strategy for constructing CDB, facilitating the high-value utilization of chitin.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39369590

RESUMEN

Slow transit constipation (STC) is a common intestinal disorder. Some studies reported that Shouhui Tongbian Capsule (SHTB) can effectively mitigate STC symptoms. A detailed understanding of the changes in the endogenous metabolite profile of rats is crucial for a more accurate comprehension of the molecular pathological characteristics of SHTB in treating STC. In the present study, a method integrating metabolomics based on Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Desorption electrospray ionization (DESI)-mass spectrometry imaging (MSI) was proposed to investigate serum, feces and colon tissue metabolic alterations of STC rats induced by diphenoxylate and the effect of SHTB treatment on metabolism. Then, Enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) analysis for verifying the potential mechanism of SHTB in treating STC. As a result, we first indicated that SHTB significantly improved intestinal peristalsis and low fecal water content in STC rats. Furthermore, after treatment with SHTB, the thickness of muscle layers was increased, demonstrated SHTB's effectiveness in reducing intestinal injury in STC rats. Besides, bile acid (BA) metabolomics based on UPLC-MS/MS revealed significant increase in serum levels of Cholic acid (CA), Deoxycholic acid (DCA), Chenodeoxycholic acid (CDCA), Ursodeoxycholic acid (UDCA), and Glycolithocholic acid (GLCA), whereas the contents of CA and DCA in feces were significantly decreased in STC rats. Nonetheless, they returned to the control levels after the SHTB administration. ELISA results showed that SHTB significantly hindered the excessive reabsorption of BAs by inhibiting apical sodium-dependent bile acid transporter (ASBT), organic solute transporter alpha (OSTα) and organic solute transporter beta (OSTß) in the ileum tissue of STC rats. Furthermore, the DESI-MSI analysis revealed that SHTB remarkably enhanced DCA in the colon tissue of STC rats. The WB results indicated that SHTB reinstated Takeda G-protein-coupled receptor 5 (TGR5) expression, a receptor for BAs and a key regulator of colonic motility. Consequently, DCA exerted its effects on TGR5, leading to the promotion of colonic motility. This study provided more comprehensive and detailed information about the BA metabolomics in the serum, feces and colon of STC rats. These findings highlighted the promising potential of metabolomics based on UPLC-MS/MS and DESI-MSI method for application in the study of STC diseases.

3.
Mol Imaging Radionucl Ther ; 33(3): 206-208, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373236

RESUMEN

A 68-year-old woman with low back pain for 2 months was admitted. T2-weighted fat-saturated imaging revealed hyperintense lesions in multiple lumbar regions, suggesting the possibility of bone metastases. Multiple osteolytic and mixed osteolytic-osteoblastic lesions with significant 18F-fluorodeoxyglucose (18F-FDG) uptake, as well as multiple osteoblastic lesions with mild 18F-FDG uptake, were observed on subsequent 18F-FDG positron emission tomography/computed tomography without an identifiable primary lesion. This patient was pathologically diagnosed with low-grade myofibroblastic sarcoma (LGMS) after biopsy and surgery. Although multiple bone involvement in LGMS is extremely rare, this case suggests that it should be considered in the differential diagnosis of multiple bone metastases.

4.
Chin Med ; 19(1): 142, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394615

RESUMEN

BACKGROUND: Slow transit constipation (STC) is highly prevalent and has rising incidence. Shouhui Tongbian capsule (SHTB) is a traditional Chinese Medicine formula with extensive and highly efficacious usage in STC treatment, however, its mechanism of action, especially the regulation of microbiome and lipid metabolites, remains unclear. METHODS: After quality control of SHTB using LC‒MS to obtain its material basis, we tried to elucidate the cohesive modulatory network of SHTB against STC using hyphenated methods from microbiomics, lipidomics, mass spectrometry imaging (MSI) and molecular methods. RESULTS: SHTB could repair intestinal barrier damage, reduce systemic inflammation and increase intestinal motility in a diphenoxylate-induced STC rat model. Based on 16S rDNA sequencing results, SHTB rehabilitated the abnormal changes in Alloprevotella, Coprococcus, Marvinbryantia, etc., which were associated with STC symptoms. Meanwhile, microbial functional prediction showed that lipid metabolism was improved with SHTB administration. The differential lipids, including fatty acids, lysophosphatidylcholine, phosphatidylcholine, sphingomyelin triglyceride and ceramide, that are closely related to STC disease and SHTB efficacy. Furthermore, SHTB significantly reversed the abnormal expression of these key target enzymes in colon samples, including CTP-phosphocholine cytidylyltransferase, CTP-phosphoethanolamine cytidylyltransferase, phosphatidic acid phosphatase, acid sphingomyelinase etc. CONCLUSIONS: Combined analysis demonstrated that SHTB reducing lipid accumulation and recovery of intestinal microbial homeostasis was the critical mechanism by which SHTB treats STC.

5.
BMC Cancer ; 24(1): 1233, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375649

RESUMEN

BACKGROUND: A Two-sample Mendelian randomization (MR) Analysis was used to assess the causal relationship between non-small cell lung cancer (NSCLC) and sepsis. METHOD: Single nucleotide polymorphisms (SNPs) closely associated with NSCLC were utilized as instrumental variables (IVs) in this study. The Inverse Variance Weighted (IVW) method was used as the primary method for MR analysis, supplemented by the Weighted median, Weighted model, and MR-Egger regression method. Sensitivity analysis was conducted to improve result robustness, and data from various sources were validated and integrated. Bonferroni tests were applied to adjust for multiple comparisons. RESULTS: After Bonferroni tests correcting the combined results, MR analysis revealed a significant association between genetically predicted NSCLC and an increased susceptibility to sepsis (odds ratios [OR]: 1.140, 95% confidence interval [CI]: 1.085-1.199, P = 2.61 × 10- 7). The combined results demonstrated that NSCLC is associated with a heightened risk of sepsis in patients under 75 years of age (OR: 1.085, 95%CI: 1.037-1.353, P = 3.84 × 10- 4). Furthermore, lung adenocarcinoma (LUAD) was found to be potentially associated with an increased susceptibility to sepsis (OR: 1.040, 95% CI: 1.009-1.073, P = 1.16 × 10- 2). These results withstood multiple sensitivity analyses, demonstrating their robustness. CONCLUSION: This study confirms that NSCLC can significantly increase susceptibility to sepsis at the genetic level, providing valuable insights for the early identification of individuals at risk for sepsis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Predisposición Genética a la Enfermedad , Neoplasias Pulmonares , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Sepsis , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Sepsis/genética , Sepsis/epidemiología , Neoplasias Pulmonares/genética , Oportunidad Relativa , Anciano
6.
Sensors (Basel) ; 24(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39338780

RESUMEN

To address the class imbalance issue in network intrusion detection, which degrades performance of intrusion detection models, this paper proposes a novel generative model called VAE-WACGAN to generate minority class samples and balance the dataset. This model extends the Variational Autoencoder Generative Adversarial Network (VAEGAN) by integrating key features from the Auxiliary Classifier Generative Adversarial Network (ACGAN) and the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP). These enhancements significantly improve both the quality of generated samples and the stability of the training process. By utilizing the VAE-WACGAN model to oversample anomalous data, more realistic synthetic anomalies that closely mirror the actual network traffic distribution can be generated. This approach effectively balances the network traffic dataset and enhances the overall performance of the intrusion detection model. Experimental validation was conducted using two widely utilized intrusion detection datasets, UNSW-NB15 and CIC-IDS2017. The results demonstrate that the VAE-WACGAN method effectively enhances the performance metrics of the intrusion detection model. Furthermore, the VAE-WACGAN-based intrusion detection approach surpasses several other advanced methods, underscoring its effectiveness in tackling network security challenges.

7.
Nat Commun ; 15(1): 7703, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231997

RESUMEN

Cobalt phthalocyanine immobilized on carbon nanotube has demonstrated appreciable selectivity and activity for methanol synthesis in electrocatalytic CO2/CO reduction. However, discrepancies in methanol production selectivity and activity between CO2 and CO reduction have been observed, leading to inconclusive mechanisms for methanol production in this system. Here, we discover that the interaction between cobalt phthalocyanine molecules and defects on carbon nanotube substrate plays a key role in methanol production during CO2/CO electroreduction. Through detailed operando X-ray absorption and infrared spectroscopies, we find that upon application of cathodic potential, this interaction induces the transformation of the planar CoN4 center in cobalt phthalocyanine to an out-of-plane distorted configuration. Consequently, this potential induced structural change promotes the transformation of linearly bonded *CO at the CoN4 center to bridge *CO, thereby facilitating methanol production. Overall, these comprehensive mechanistic investigations and the outstanding performance (methanol partial current density over 150 mA cm-2) provide valuable insights in guiding the activity and selectivity of immobilized cobalt phthalocyanine for methanol production in CO2/CO reduction.

8.
J Adv Res ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270978

RESUMEN

INTRODUCTION: Heart failure (HF) is a systemic metabolic disorder disease, across multiorgan investigations advancing knowledge of progression and treatment of HF. Whole-body MSI provides spatiotemporal information of metabolites in multiorgan and is expected to be a potent tool to dig out the complex mechanism of HF. OBJECTIVES: This study aimed at exploring the systemic metabolic disorder in multiorgan and catecholamines biosynthesis alteration on heart-gut axis after HF. METHODS: Whole-body MSI was used to characterize metabolic disorder of the whole rat body after HF. An integrated method by MSI, LC-MS/MS and ELISA was utilized to analyze key metabolites and enzymes on heart, small intestine, cecum and colon tissues of rat. Gut microbiota dysbiosis was investigated by 16S rDNA sequencing and metagenomic sequencing. Validation experiments and in vitro experiments were performed to verify the effect of catecholamines biosynthesis alteration on heart-gut axis after HF. RESULTS: Whole-body MSI exhibited varieties of metabolites alteration in multiple organs. Remarkably, catecholamine biosynthesis was significantly altered in the serum, heart and intestines of rats. Furthermore, catecholamines and tyrosine hydroxylase were obviously upregulated in heart and colon tissue. Turicibacter_sanguinis was relevant to catecholamines of heart and colon. Validation experiments demonstrated excessive norepinephrine induced cardio-intestinal injury, including significantly elevating the levels of BNP, pro-BNP, LPS, DAO, and increased the abundance of Turicibacter_sanguinis. These alterations could be reversed by metoprolol treatment blocking the effect of norepinephrine. Additionally, in vitro studies demonstrated that norepinephrine promoted the growth of Turicibacter_sanguinis and Turicibacter_sanguinis could import and metabolize norepinephrine. Collectively, excessive norepinephrine exerted bidirectional effects on cardio-intestinal function to participate in the progression of HF. CONCLUSION: Our study provides a new approach to elucidate multiorgan metabolic disorder and proposes new insights into heart-gut axis in HF development.

9.
Front Microbiol ; 15: 1428286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282563

RESUMEN

The adhesion of microorganisms and the subsequent formation of mineralized layers in biofilms are of great significance in inhibiting the corrosion of metal materials. In this work, we found that the adhesion and subsequent mineralization of Bacillus subtilis on the surface of low-alloy steel are influenced by the molybdenum in the material. The addition of molybdenum will lead to increased adhesion of B. subtilis on the material surface, and the subsequent biomineralization ability has also been improved. Through transcriptome and physiological and biochemical tests, we found that molybdenum can affect the chemotaxis, mobility and carbonic anhydrase secretion related genes of B. subtilis, and then affect the formation and mineralization of the biofilm of B. subtilis.

10.
Open Med (Wars) ; 19(1): 20241035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308920

RESUMEN

Objective: The aim of this study was to investigate iron status and iron deficiency in incident continuous ambulatory peritoneal dialysis (CAPD) patients and identify influencing factors. Methods: Patients with end-stage renal disease were enrolled. Clinical data of iron metabolism and biochemical and dialysis parameters during the first peritoneal dialysis evaluation were collected. Serum ferritin (SF) and transferrin saturation (TSAT) levels were evaluated, and independent influencing factors were identified by correlation and regression analyses. Results: Of 1,128 adult CAPD patients, 41.2% had iron deficiency (ID), 15.7% had absolute iron deficiency, and 8.2% had functional iron deficiency. The average SF level was (276.8 ± 277.9) µg/L, and iron saturation was (29.8 ± 12.7)%. Additionally, 50.2 and 69.3% of patients reached targets in SF level and iron saturation recommended by the Chinese Society of Nephrology. SF level and TSAT were not correlated with estimated glomerular filtration rate, whereas negatively correlated with platelet count and inflammatory factors. Low platelet count, presence of diabetes mellitus and high interleukin 6 levels were independent factors of lower TSAT. Conclusions: ID is common in patients with CAPD. Women and those with thrombocytopenia, diabetes, and inflammation are at higher risk for iron storage or reduced iron utilization. In the initial CAPD stage, a reasonable iron supplement strategy may be established for CAPD patients with high-risk factors.

11.
Plant Sci ; 349: 112247, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313002

RESUMEN

Phytophthora root and stem rot caused by Phytophthora sojae (P. sojae) is one of the most destructive diseases to affect soybean (Glycine max (L.) Merr) production. GmSRC2 that encodes a C2 domain-containing protein can respond to various stresses, however, the molecular mechanism of GmSRC2 in resistance of soybean to P. sojae is yet to be fully elucidated. In this study, GmSRC2 was found to be significantly up-regulated under P. sojae treatment; GmSRC2-overexpression (OE) transgenic lines and GmSRC2-silencing transient plants were generated via Agrobacterium tumefaciens mediated transformation and virus-induced gene silencing (VIGS) system, respectively. Infected leaves and cotyledons of OE-GmSRC2-1 and OE-GmSRC2-2 lines showed significant decreases in the disease symptoms and P. sojae biomass than those of wild type (WT); the activities of superoxide dismutase (SOD) and peroxidase (POD) confirmed the accumulation of reactive oxygen species (ROS) in overexpressed transgenic lines. Whereas, silencing of GmSRC2 severely increased the disease symptoms and the biomass of P. sojae. Further, we confirmed that GmSRC2 interacted with the effector PsAvh23 of P. sojae, and the C2 domain was crucial for the interaction. Overexpression of GmSRC2 upregulated the ADA2/GCN5 module upon P. sojae. The aforementioned results demonstrated that GmSRC2 played vital roles in regulating soybean resistance to oomycetes.

12.
RSC Med Chem ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39246751

RESUMEN

Bcr-Abl is successfully applied to drug discovery as a CML therapeutic target, but point mutation resistance has become a major challenge in the clinical treatment of CML. Our previous studies have shown that the introduction of amino acids as flexible linkers and heterocyclic structures as HBMs can achieve potent inhibition of Bcr-AblT315I. In continuation of these studies, we further enriched the linker types by developing a library of compounds with tert-leucine or serine as a linker. Biological results showed that these compounds exhibited enhanced inhibition against Bcr-AblWT and Bcr-AblT315I kinases as well as improved antiproliferative activity in leukemia cell assays compared to previously disclosed compounds. In particular, compounds TL8, TL10, BS4, BS10, SR5 and SR11 exhibited potent inhibitory activities against Ba/F3 cells bearing a T315I mutant. Additionally, compounds TL8, BS4 and SR5 effectively induced K562 cell apoptosis, arrested the cell cycle at the S or G2/M phase, and inhibited the phosphorylation of Bcr-Abl and STAT5 in a dose-dependent manner. Docking studies verified the rationality of tert-leucine or serine as a flexible linker and indicated that phenylpyridine with an amide side chain favored the potency of these inhibitors. Moreover, ADME prediction suggested that the tested compounds had a favorable safety profile. Thus, tert-leucine or serine can be used as a promising class of flexible linkers for Bcr-Abl inhibitors with heterocyclic structures as HBMs, and compounds BS4, SR5, and especially TL8, can be used as starting points for further optimization.

13.
Langmuir ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250777

RESUMEN

Cooling environments are a pervasive need in our society, with conventional air conditioners being the most popular approach. However, air conditioners rely heavily on electricity and Freon, a chemical that depletes ozone and contributes to greenhouse gas effects. To address this issue, passive daytime radiative coolers (PDRCs) have been proposed to achieve cooling by simultaneously reflecting sunlight and allowing internal heat to escape without electricity. Despite their potential, most high-performance PDRCs are composed of thick polymer films, which increases material costs during PDRC preparation and limits thermal transport. In this work, we introduced an economical and scalable solvent evaporation-based method to prepare a relatively thin hierarchically micro- and nanostructured poly(vinylidene fluoride-trifluoroethylene) via crystallinity alteration. Particularly, we find that the key to generating nanosized pores is to remove the water residual within the film without sample annealing, which significantly enhances the scattering efficiency across the solar spectrum. With our design, we demonstrate effective cooling of the outdoor environment, achieving a cooling temperature of Δ2.5 °C, with a film thickness of only 215 µm. Furthermore, our model suggested that applying this material could lead to annual energy savings of up to ∼39% in warmer climates across the country and up to 715 GJ nationwide. Developing effective PDRCs with reduced material thickness, such as the one discussed here, is imperative for implementing sustainable cooling solutions and reducing our carbon footprint.

14.
Cancer Med ; 13(17): e70117, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39248131

RESUMEN

OBJECTIVE: Previous results about prognostic value of CD4+ T cells in follicular lymphoma (FL) remain controversial. METHODS: Immunohistochemistry was used to examine expression of positive CD4 cells in 103 patients with FL 1-3A. Early failure was described as failing to achieve event-free survival (EFS) at 12 or 24 months. RESULTS: There were 49 (47.6%) male and 54 (52.4%) females, with a median age of 54 years. Compared to patients with <20% of positive CD4 cells, patients with ≥20% of positive CD4 cells exhibited a significant lower risk of early failure (2-year EFS rate: 56.7% vs 73.5%, p = 0.047). When patients were stratified based on positive CD4 cell combined with FLIPI, the median EFS (p = 0.002) and median OS (p = 0.007) were significantly different. CONCLUSIONS: This study demonstrated that higher expression of positive CD4 cells predicts lower risk of early failure in follicular lymphoma, and combination analysis of CD4 and FLIPI could better predict disease relapse and survival outcome.


Asunto(s)
Linfocitos T CD4-Positivos , Linfoma Folicular , Humanos , Linfoma Folicular/mortalidad , Linfoma Folicular/patología , Linfoma Folicular/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Pronóstico , Anciano de 80 o más Años , Supervivencia sin Progresión
15.
Int J Biol Macromol ; 278(Pt 2): 134826, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154684

RESUMEN

Forest frog's oviduct oil (FFOO) is highly susceptible to microbial spoilage during storage, which causes serious safety concerns and economic losses. However, little information is available regarding the preservation of it up to now. The aim of this research is to understand the dominant microbial community of FFOO spoilage, and based on this, develop a kind of edible nanoemulsion coating for preserving FFOO. Microbial metagenomic analysis indicated that the Aspergillus genus increased significantly during storage. In the present study, gum arabic and whey protein isolate were chosen as the coating matrix, the natural compounds sanguinarine and glabridin were selected as antimicrobial agents to prepare double-layer nanoemulsion edible coating. When the ratio of sanguinarine and glabridin in the nanoemulsion was 1:3, it exhibited strongest storage stability and antifungal activity. The mycelial inhibition rate of 1:3 nanoemulsion against dominant microbial community (Aspergillus niger and Aspergillus glaucus) reached 88.89 ± 1.37 % and 89.68 ± 1.37 %, respectively. The experimental results indicated that the edible nanoemulsion coating not only had outstanding antifungal activity, but also had excellent fresh-keeping effect on FFOO. This nanoemulsion coating could be a promising and potential candidate for food preservation.


Asunto(s)
Antifúngicos , Emulsiones , Goma Arábiga , Animales , Antifúngicos/farmacología , Antifúngicos/química , Femenino , Goma Arábiga/química , Benzofenantridinas/química , Benzofenantridinas/farmacología , Proteína de Suero de Leche/química , Proteína de Suero de Leche/farmacología , Pruebas de Sensibilidad Microbiana , Isoquinolinas
16.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39123878

RESUMEN

With the development of smart agriculture, autopilot technology is being used more and more widely in agriculture. Because most of the current global path planning only considers the shortest path, it is difficult to meet the articulated steering tractor operation needs in the orchard environment and address other issues, so this paper proposes a hybrid algorithm of an improved bidirectional search A* algorithm and improved differential evolution genetic algorithm(AGADE). First, the integrated priority function and search method of the traditional A* algorithm are improved by adding weight influence to the integrated priority, and the search method is changed to a bidirectional search. Second, the genetic algorithm fitness function and search strategy are improved; the fitness function is set as the path tree row center offset factor; the smoothing factor and safety coefficient are set; and the search strategy adopts differential evolution for cross mutation. Finally, the shortest path obtained by the improved bidirectional search A* algorithm is used as the initial population of an improved differential evolution genetic algorithm, optimized iteratively, and the optimal path is obtained by adding kinematic constraints through a cubic B-spline curve smoothing path. The convergence of the AGADE hybrid algorithm and GA algorithm on four different maps, path length, and trajectory curve are compared and analyzed through simulation tests. The convergence speed of the AGADE hybrid algorithm on four different complexity maps is improved by 92.8%, 64.5%, 50.0%, and 71.2% respectively. The path length is slightly increased compared with the GA algorithm, but the path trajectory curve is located in the center of the tree row, with fewer turns, and it meets the articulated steering tractor operation needs in the orchard environment, proving that the improved hybrid algorithm is effective.

17.
Am J Clin Pathol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121027

RESUMEN

OBJECTIVES: Primary intestinal T-cell and natural killer-cell lymphomas (PITNKLs) are aggressive and make pathologic diagnoses in biopsy specimens challenging. We analyzed different subtypes' clinicopathologic features and treatment outcomes. METHODS: Seventy-nine PITNKL cases were characterized by clinical, morphologic, and immunohistochemical features. RESULTS: Among 79 cases of PITNKLs from 2008 to 2017 in our institution, 40 (50.63%) were extranodal NK/T-cell lymphoma, nasal type (ENKTL); 32 (40.51%) monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL); 6 (7.59%) intestinal T-cell lymphoma, not otherwise specified; and 1 (1.27%) indolent T-cell lymphoma of the gastrointestinal tract. Small intestine (n = 47) was the most common site. Monomorphic epitheliotropic intestinal T-cell lymphoma showed distinctive clinicopathologic features from other subtypes with high expression (96.88%) of spleen tyrosine kinase (SYK) and PD-L1 (87.5%) and the poorest prognosis (P < .001). CD30 was highly expressed in ENKTL (9/17, 57.94%) and irrelevant to prognosis (P > .05). CONCLUSIONS: Cases of PITNKL are biologically heterogeneous; most have a dismal prognosis. SYK and PD-L1 expression might be a significant marker for MEITL and helps differential diagnosis.

18.
Food Chem ; 460(Pt 3): 140593, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111046

RESUMEN

Zearalenone contaminates food and poses a threat to human health. It is vital to develop cost-effective and environmentally-friendly adsorbents for its removal. By screening Sporobolomyces pararoseus (SZ4) and modified yam starch (adsorption capacity (qe) of 1.33 and 0.94 mg/g, respectively), this study prepared a novel composite aerogel adsorbent (P-YSA@SZ410). The compressive strength of P-YSA@SZ410 was 1.35-fold higher than unloaded yeast. It contained several functional groups and three-dimensional interconnected channels, achieving a 0° contact angle within 0.18 s, thereby demonstrating excellent water-absorbent properties. With a qe of 2.96 mg/g at 308 K, the adsorption process of P-YSA@SZ410 was spontaneous, endothermic, and matched pseudo-second-order and Langmuir models. The composite adsorbed zearalenone via electrostatic attraction and hydrogen bonding, maintaining a qe of 2.24 mg/g after five cycles. P-YSA@SZ410 was found to remove zearalenone effectively under various conditions and could be applied to corn silk tea, indicating its great potential as an adsorbent material.


Asunto(s)
Almidón , Zea mays , Zearalenona , Zearalenona/química , Almidón/química , Zea mays/química , Adsorción , Dioscorea/química , Contaminación de Alimentos/análisis , Porosidad , Basidiomycota/química , Geles/química , Cinética
19.
MedComm (2020) ; 5(9): e689, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39156765

RESUMEN

Recryopreservation (recryo) is occasionally applied in clinical, while the underlying mechanism of impaired clinical outcomes after recryo remains unclear. In this study, frozen embryo transfer (FET) cycles of single blastocyst transfer in an academic reproductive medicine center were enrolled. According to the number of times blastocysts experienced cryopreservation, they were divided into the cryopreservation (Cryo) group and the Recryo group. Donated human blastocysts were collected and detected for mechanism exploration. It was found that recryo procedure resulted in impaired blastocyst developmental potential, including decreased implantation rate, reduced biochemical pregnancy rate, declined clinical pregnancy rate, higher early miscarriage rate, and lower live birth rate. Moreover, recryo led to impaired trophectoderm (TE) function, exhibiting lower human chorionic gonadotropin levels 12 days after FET. In addition, single-cell RNA sequencing showed that the expression of genes involved in cell adhesion and embryo development were altered. More specifically, activated endoplasmic reticulum (ER) pathway and induced apoptosis were further verified by immunofluorescence and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay involving in the recryo procedure. In conclusion, recryo could interfere with the process of blastocyst implantation by impairing TE function, affecting blastocyst adhesion, activating ER stress pathway and inducing apoptosis. It provides caution to embryologists about the potential risk of recryopreservation.

20.
Front Microbiol ; 15: 1419293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171266

RESUMEN

Sweet potato residue (SPR) is the by-product of starch extraction from fresh sweet potatoes and is rich in carbohydrates, making it a suitable substrate for bioethanol production. An amylolytic industrial yeast strain with co-expressing α-amylase and glucoamylase genes would combine enzyme production, SPR hydrolysis, and glucose fermentation into a one-step process. This consolidated bioprocessing (CBP) shows great application potential in the economic production of bioethanol. In this study, a convenient heterologous gene integration method was developed. Eight copies of a Talaromyces emersonii α-amylase expression cassette and eight copies of a Saccharomycopsis fibuligera glucoamylase expression cassette were integrated into the genome of industrial diploid Saccharomyces cerevisiae strain 1974. The resulting recombinant strains exhibited clear transparent zones in the iodine starch plates, and SDS-PAGE analysis indicated that α-amylase and glucoamylase were secreted into the culture medium. Enzymatic activity analysis demonstrated that the optimal temperature for α-amylase and glucoamylase was 60-70°C, and the pH optima for α-amylase and glucoamylase was 4.0 and 5.0, respectively. Initially, soluble corn starch with a concentration of 100 g/L was initially used to evaluate the ethanol production capability of recombinant amylolytic S. cerevisiae strains. After 7 days of CBP fermentation, the α-amylase-expressing strain 1974-temA and the glucoamylase-expressing strain 1974-GA produced 33.03 and 28.37 g/L ethanol, respectively. However, the 1974-GA-temA strain, which expressed α-amylase and glucoamylase, produced 42.22 g/L ethanol, corresponding to 70.59% of the theoretical yield. Subsequently, fermentation was conducted using the amylolytic strain 1974-GA-temA without the addition of exogenous α-amylase and glucoamylase, which resulted in the production of 32.15 g/L ethanol with an ethanol yield of 0.30 g/g. The addition of 20% glucoamylase (60 U/g SPR) increased ethanol concentration to 50.55 g/L, corresponding to a theoretical yield of 93.23%, which was comparable to the ethanol production observed with the addition of 100% α-amylase and glucoamylase. The recombinant amylolytic strains constructed in this study will facilitate the advancement of CBP fermentation of SPR for the production of bioethanol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA