Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Pharmacol ; 54: 155-161, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28735146

RESUMEN

Public concern is growing about the exposure to electromagnetic fields (EMF) and its effect on male reproductive health. Detrimental effect of EMF exposure on sex hormones, reproductive performance and sex-ratio was reported. The present study was designed to clarify whether paternal exposure to electromagnetic pulse (EMP) affects offspring sex ratio in mice. 50 male BALB/c mice aged 5-6 weeks were exposed to EMP daily for 2 weeks before mated with non-exposed females at 0d, 7d, 14d, 21d and 28d after exposure. Sex hormones including total testosterone, LH, FSH, and GnRH were detected using radioimmunoassay. The sex ratio was examined by PCR and agarose gel electrophoresis. The results of D0, D21 and D28 showed significant increases compared with sham-exposed groups. The serum testosterone increased significantly in D0, D14, D21, and D28 compared with sham-exposed groups (p<0.05). Overall, this study suggested that EMP exposure may lead to the disturbance of reproductive hormone levels and affect the offspring sex ratio.


Asunto(s)
Campos Electromagnéticos , Razón de Masculinidad , Testosterona/sangre , Animales , Femenino , Hormona Liberadora de Gonadotropina/sangre , Hormona Luteinizante/sangre , Masculino , Ratones Endogámicos BALB C , Reproducción
2.
Artículo en Inglés | MEDLINE | ID: mdl-29295490

RESUMEN

More studies that are focused on the bioeffects of radio-frequency (RF) electromagnetic radiation that is generated from the communication devices, but there were few reports with confirmed results about the bioeffects of RF radiation on reproductive cells. To explore the effects of 1950 MHz RF electromagnetic radiation (EMR) on mouse Leydig (TM3) cells. TM3 cells were irradiated or sham-irradiated continuously for 24 h by the specific absorption rate (SAR) 3 W/kg radiation. At 0, 1, 2, 3, 4, and 5 days after irradiation, cell proliferation was detected by cell counting kit-8 (CCK-8) method, cell cycle distribution, percentage of apoptosis, and cellular reactive oxygen species (ROS) were examined by flow cytometry, Testosterone level was measured using enzyme-linked immunosorbent assay (ELISA) assay, messenger ribonucleic acid (mRNA) expression level of steroidogenic acute regulatory protein (StAR) and P450scc in TM3 cells was detected by real-time polymerase chain reaction (PCR). After being irradiated for 24 h, cell proliferation obviously decreased and cell cycle distribution, secretion capacity of Testosterone, and P450scc mRNA level were reduced. While cell apoptosis, ROS, and StAR mRNA level did not change significantly. The current results indicated that 24 h of exposure at 1950 MHz 3 W/kg radiation could cause some adverse effects on TM3 cells proliferation and Testosterone secretion, further studies about the biological effects in the reproductive system that are induced by RF radiation are also needed.


Asunto(s)
Células Intersticiales del Testículo/efectos de la radiación , Ondas de Radio/efectos adversos , Testosterona/antagonistas & inhibidores , Animales , Apoptosis/efectos de la radiación , Ciclo Celular/efectos de la radiación , Línea Celular , Proliferación Celular/efectos de la radiación , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Testosterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA