Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Physiol Biochem ; 212: 108706, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776824

RESUMEN

Trichoderma spp. can enhance plant resistance against a wide range of biotic stressors. However, the fundamental mechanisms by which Trichoderma enhances plant resistance against Meloidogyne incognita, known as root-knot nematodes (RKNs), are still unclear. Here, we identified a strain of Trichoderma asperellum (T141) that could effectively suppress RKN infestation in tomato (Solanum lycopersicum L.). Nematode infestation led to an increase in the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) in roots but pre-inoculation with T141 significantly decreased oxidative stress. The reduction in ROS and MDA was accompanied by an increase in the activity of antioxidant enzymes and the accumulation of flavonoids and phenols. Moreover, split root test-based analysis showed that T141 inoculation in local roots before RKN inoculation increased the concentration of phytohormone jasmonate (JA) and the transcripts of JA synthesis and signaling-related genes in distant roots. UPLC-MS/MS-based metabolomics analysis identified 1051 differentially accumulated metabolites (DAMs) across 4 pairwise comparisons in root division test, including 81 flavonoids. Notably, 180 DAMs were found in comparison between RKN and T141-RKN, whereas KEGG annotation and enrichment analysis showed that the secondary metabolic pathways, especially the flavonoid biosynthesis, played a key role in the T141-induced systemic resistance to RKNs. The role of up-regulated flavonoids in RKN mortality was further verified by in vitro experiments with the exogenous treatment of kaempferol, hesperidin and rutin on J2-stage RKNs. Our results revealed a critical mechanism by which T141 induced resistance of tomato plants against the RKNs by systemically promoting secondary metabolism in distant roots.


Asunto(s)
Resistencia a la Enfermedad , Flavonoides , Enfermedades de las Plantas , Raíces de Plantas , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Flavonoides/metabolismo , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Hypocreales/metabolismo , Resistencia Sistémica Adquirida de la Planta
2.
J Hazard Mater ; 471: 134299, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631252

RESUMEN

Trichoderma can enhance the metabolism of organophosphate pesticides in plants, but the mechanism is unclear. Here, we performed high-throughput transcriptome sequencing of roots upon Trichoderma asperellum (TM) inoculation and phoxim (P) application in tomato (Solanum lycopersicum L.). A total of 4059 differentially expressed genes (DEGs) were obtained, including 2110 up-regulated and 1949 down-regulated DEGs in P vs TM+P. COG and KOG analysis indicated that DEGs were mainly enriched in signal transduction mechanisms. We then focused on the pesticide detoxification pathway and screened out cytochrome P450 CYP736A12 as a putative gene for functional analysis. We suppressed the expression of CYP736A12 in tomato plants by virus-induced gene silencing and analyzed tissue-specific phoxim residues, oxidative stress markers, glutathione pool, GST activity and related gene expression. Silencing CYP736A12 significantly increased phoxim residue and induced oxidative stress in tomato plants, by attenuating the TM-induced increased activity of antioxidant and detoxification enzymes, redox homeostasis and transcripts of detoxification genes including CYP724B2, GSH1, GSH2, GR, GPX, GST1, GST2, GST3, and ABC. The study revealed a critical mechanism by which TM promotes the metabolism of phoxim in tomato roots, which can be useful for further understanding the Trichoderma-induced xenobiotic detoxification and improving food safety.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Compuestos Organotiofosforados , Raíces de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Compuestos Organotiofosforados/toxicidad , Compuestos Organotiofosforados/metabolismo , Residuos de Plaguicidas/toxicidad , Residuos de Plaguicidas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hypocreales/metabolismo , Hypocreales/genética
3.
Plant Physiol Biochem ; 207: 108398, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38359555

RESUMEN

Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways. Crucially, the emerging plant hormone melatonin attenuates excessive ROS accumulation under stress, whereas ROS signaling mediates melatonin-induced plant developmental response and stress tolerance. In particular, RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) proteins responsible for apoplastic ROS generation act downstream of melatonin to mediate stress response. In this review, we discuss promising developments in plant ROS signaling and how ROS might mediate melatonin-induced plant resilience to environmental stress.


Asunto(s)
Melatonina , Especies Reactivas de Oxígeno/metabolismo , Melatonina/farmacología , Plantas/metabolismo , Estrés Fisiológico , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo
4.
J Am Chem Soc ; 145(41): 22475-22482, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37797315

RESUMEN

Hybrid organic-inorganic perovskites (HOIPs) have exhibited striking application potential in piezoelectric energy harvesting and sensing due to their high piezoelectricity, light weight, and solution processability. However, to date, the application of piezoelectric HOIPs in ultrasound detection has not yet been explored. Here, we report the synthesis of a pair of chiral two-dimensional piezoelectric HOIPs, R-(4-bromo-2-butylammonium)2PbBr4 and S-(4-bromo-2-butylammonium)2PbBr4 [R-(BrBA)2PbBr4 and S-(BrBA)2PbBr4], which show low mechanical strength and significant piezoelectric strain coefficients that are advantageous for mechanoelectrical energy conversion. Benefiting from these virtues, the R-(BrBA)2PbBr4@PBAT and S-(BrBA)2PbBr4@PBAT [PBAT = poly(butyleneadipate-co-terephthalate)] composite films show prominent underwater ultrasound detection performance with a transmission effectivity of 12.0% using a 10.0 MHz probe, comparable with that of a polyvinylidene fluoride (PVDF) device fabricated in the same conditions. Density functional theory calculations reveal that R-(BrBA)2PbBr4 and S-(BrBA)2PbBr4 have a beneficial acoustic impedance (5.07-6.76 MRayl) compatible with that of water (1.5 MRayl), which is responsible for the facile ultrasound-induced electricity generation. These encouraging results open up new possibilities for applying piezoelectric HOIPs in underwater ultrasound detection and imaging technologies.

5.
Dalton Trans ; 52(36): 12909-12917, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37646201

RESUMEN

Metal-organic frameworks (MOFs) have shown significant potential for drug delivery applications. However, there remains a scarcity of comprehensive research addressing the influence of surface properties of MOFs on drug release kinetics and drug solubility. This study focuses on examining the influence of MOFs hydrophilicity and hydrophobicity on the controlled release and solubility of drugs. To achieve this, we prepared drug-loaded nanoparticles through in situ synthesis and created a drug-MOF co-amorphous system using the ball milling technique. Under neutral conditions, the hydrophilic MOF-based drug delivery system demonstrated a comparatively slower drug release profile than its hydrophobic counterpart. This observation suggests that the hydrophilic system holds promise in mitigating drug side effects by enabling improved control over drug release. The implementation of hydrophobic MOFs in co-amorphous systems yields a more pronounced effect on enhancing solubility compared to hydrophilic MOFs. This study offers valuable insights for achieving optimal drug release kinetics and solubility by delicately manipulating surface properties of MOFs.


Asunto(s)
Estructuras Metalorgánicas , Zeolitas , Liberación de Fármacos , Solubilidad , Sistemas de Liberación de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas
6.
J Hazard Mater ; 453: 131456, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37088022

RESUMEN

Chromium (Cr) is a toxic heavy metal for both animals and plants. The multifunctional signaling molecule melatonin can confer plant tolerance to heavy metal stress, but the mechanisms remain largely unknown. Here, we unveiled the critical role of the secondary metabolite anthocyanin in melatonin-induced Cr stress tolerance. Excess Cr caused severe phytotoxicity, which was manifested by leaf yellowing, stunted growth, reduced Fv/Fm, and increased accumulation of reactive oxygen species and malondialdehyde in a dose-dependent manner. Interestingly, leaf anthocyanin content increased under Cr stress and was the highest under 100 µM Cr (7.67-fold), while exogenous melatonin further increased anthocyanin accumulation with the highest being with 100 µM melatonin (by 90.72 %). In addition, exogenous melatonin increased endogenous melatonin content and alleviated Cr stress; however, suppression of melatonin accumulation aggravated Cr phytotoxicity and inhibited anthocyanin accumulation by downregulating the transcript levels of key structural genes. Melatonin also reduced the Cr content in roots and leaves. Crucially, suppression of anthocyanin biosynthesis by silencing an anthocyanin biosynthetic gene ANTHOCYANIDIN SYNTHASE (ANS) significantly compromised melatonin-induced anthocyanin accumulation and alleviation of Cr phytotoxicity, suggesting that anthocyanin potentially acts downstream of melatonin and its accumulation is essential for melatonin-induced Cr stress tolerance in tomato plants.


Asunto(s)
Melatonina , Solanum lycopersicum , Melatonina/farmacología , Estrés Oxidativo , Antocianinas , Cromo/toxicidad , Cromo/metabolismo , Antioxidantes/metabolismo
7.
ACS Nano ; 16(2): 3221-3230, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35143162

RESUMEN

Introducing the chiral spacers to two-dimensional (2D) lead halide perovskites (LHPs) enables them to exhibit circularly polarized photoluminescence (CPPL), which could have applications in chiral-optics and spintronics. Despite that a great deal of effort has been made in this field, the reported polarization degree of CPPL at ambient conditions is still very limited, and the integration of multiple functionalities also remains to be explored. Here we report the structures, CPPL, and piezoelectric energy harvesting properties of chiral 2D LHPs, [R-1-(4-bromophenyl)ethylaminium]2PbI4 (R-[BPEA]2PbI4) and [S-1-(4-bromophenyl)ethylaminium]2PbI4 (S-[BPEA]2PbI4). Our results show that these chiral perovskites are direct bandgap semiconductors and exhibit CPPL centered at ∼513 nm with a maximum degree of polarization of up to 11.0% at room temperature. In addition, the unique configurational arrangement of the chiral spacers is found to be able to reduce the interlayer π-π interactions and consequently result in strong electron-phonon coupling. Furthermore, the intrinsic chirality of both R-[BPEA]2PbI4 and S-[BPEA]2PbI4 enables them to be piezoelectric active, and their composite films can be applied to generate voltages and currents up to ∼0.6 V and ∼1.5 µA under periodic impacting with a strength of 2 N, respectively. This work not only reports a high degree of CPPL but also demonstrates piezoelectric energy harvesting behavior for realizing multifunctionalities in chiral 2D LHPs.

8.
Small ; 18(3): e2103829, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34825468

RESUMEN

Hybrid organic-inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self-powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite-type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead-free metal halide, (BTMA)2 CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4 ]2- tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N-1 ), low Young's and shear moduli (4.11-17.56 GPa; 1.86-7.91 GPa). Moreover, the (BTMA)2 CoBr4 /PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2 CoBr4 /PDMS-based flexible devices show attractive performance in energy harvesting with an open-circuit voltage of 19.70 V, short-circuit current of 4.24 µA, and powder density of 11.72 µW cm-2 , catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2 CoBr4 and related piezoelectric lead-free halides can be promising molecular materials in modern energy and sensing applications.


Asunto(s)
Movimiento (Física) , Humanos
9.
Research (Wash D C) ; 2021: 9850151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34268497

RESUMEN

Metal-organic frameworks (MOFs) have attracted significant attention in the past two decades due to their diverse physical properties and associated functionalities. Although numerous advances have been made, the acoustic properties of MOFs have attracted very little attention. Here, we systematically investigate the acoustic velocities and impedances of 19 prototypical MOFs via first-principle calculations. Our results demonstrate that these MOFs exhibit a wider range of acoustic velocities, higher anisotropy, and lower acoustic impedances than their inorganic counterparts, which are ascribed to their structural diversity and anisotropy, as well as low densities. In addition, the piezoelectric properties, which are intimately related to the acoustic properties, were calculated for 3 MOFs via density functional perturbation theory, which reveals that MOFs can exhibit significant piezoelectricity due to the ionic contribution. Our work provides a comprehensive study of the fundamental acoustic properties of MOFs, which could stimulate further interest in this new exciting field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA