Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Front Immunol ; 15: 1424950, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108264

RESUMEN

Osteosarcoma (OS) is an aggressive and highly lethal bone tumor, highlighting the urgent need for further exploration of its underlying mechanisms. In this study, we conducted analyses utilizing bulk transcriptome sequencing data of OS and healthy control samples, as well as single cell sequencing data, obtained from public databases. Initially, we evaluated the differential expression of four tumor microenvironment (TME)-related gene sets between tumor and control groups. Subsequently, unsupervised clustering analysis of tumor tissues identified two significantly distinct clusters. We calculated the differential scores of the four TME-related gene sets for Clusters 1 (C1) and 2 (C2), using Gene Set Variation Analysis (GSVA, followed by single-variable Cox analysis. For the two clusters, we performed survival analysis, examined disparities in clinical-pathological distribution, analyzed immune cell infiltration and immune evasion prediction, assessed differences in immune infiltration abundance, and evaluated drug sensitivity. Differentially expressed genes (DEGs) between the two clusters were subjected to Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA). We conducted Weighted Gene Co-expression Network Analysis (WGCNA) on the TARGET-OS dataset to identify key genes, followed by GO enrichment analysis. Using LASSO and multiple regression analysis we conducted a prognostic model comprising eleven genes (ALOX5AP, CD37, BIN2, C3AR1, HCLS1, ACSL5, CD209, FCGR2A, CORO1A, CD74, CD163) demonstrating favorable diagnostic efficacy and prognostic potential in both training and validation cohorts. Using the model, we conducted further immune, drug sensitivity and enrichment analysis. We performed dimensionality reduction and annotation of cell subpopulations in single cell sequencing analysis, with expression profiles of relevant genes in each subpopulation analyzed. We further substantiated the role of ACSL5 in OS through a variety of wet lab experiments. Our study provides new insights and theoretical foundations for the prognosis, treatment, and drug development for OS patients.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Óseas , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Osteosarcoma , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral , Humanos , Osteosarcoma/genética , Osteosarcoma/inmunología , Osteosarcoma/mortalidad , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Óseas/genética , Neoplasias Óseas/inmunología , Neoplasias Óseas/mortalidad , Neoplasias Óseas/patología , Biomarcadores de Tumor/genética , Pronóstico , Masculino , Femenino , Redes Reguladoras de Genes
2.
Biol Direct ; 19(1): 62, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095871

RESUMEN

BACKGROUND: High glucose levels are key factors and key contributors to several cardiovascular diseases associated with cardiomyocyte injury. Ferroptosis, which was identified in recent years, is a mode of cell death caused by the iron-mediated accumulation of lipid peroxides. Neuregulin-4 (Nrg4) is an adipokine that has protective effects against metabolic disorders and insulin resistance. Our previous study revealed that Nrg4 has a protective effect against diabetic myocardial injury, and the aim of this study was to investigate whether Nrg4 could attenuate the occurrence of high glucose-induced ferroptosis in cardiomyocytes. METHODS: We constructed an in vivo diabetic myocardial injury model in which primary cardiomyocytes were cultured in vitro and treated with Nrg4. Changes in ferroptosis-related protein levels and ferroptosis-related indices in cardiomyocytes were observed. In addition, we performed back-validation and explored signalling pathways that regulate ferroptosis in primary cardiomyocytes. RESULTS: Nrg4 attenuated cardiomyocyte ferroptosis both in vivo and in vitro. Additionally, the AMPK/NRF2 signalling pathway was activated during this process, and when the AMPK/NRF2 pathway was inhibited, the beneficial effects of Nrg4 were attenuated. CONCLUSION: Nrg4 antagonizes high glucose-induced ferroptosis in cardiomyocytes via the AMPK/NRF2 signalling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ferroptosis , Glucosa , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2 , Neurregulinas , Transducción de Señal , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Neurregulinas/metabolismo , Neurregulinas/genética , Animales , Ferroptosis/efectos de los fármacos , Glucosa/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Ratones , Masculino , Ratas
3.
Inorg Chem ; 63(24): 11424-11430, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38841806

RESUMEN

Nanocrystals (NCs) exposed with high-index facets usually show enhanced electrocatalytic performances. However, it is a great challenge to persevere with high-index facets against their high surface energy during the synthesis. Herein, we successfully synthesize concave hexoctahedral (c-HOH) Pd NCs exposed with 48 high-index {741} facets using a facile one-pot wet-chemical protocol. Control experiments illustrate that l-ascorbic acid plays a critical role in the formation of the c-HOH morphology, acting as both reducing and capping agents. Moreover, we can extend the synthesis for fabricating c-HOH Pd@Pt core-shell NCs by simply introducing a Pt precursor into the reaction solution, attaining remarkably boosted electrocatalysis for methanol electrooxidation reaction (MOR). Integrating the merits of {741} facets, concave structure, and ligand and strain effect of the core-shell structure, c-HOH Pd4@Pt1 core-shell NCs showed an excellent MOR mass activity of 1.18 A mgPGM-1 or 3.60 A mgPt-1, which is 3.80 or 11.61 times higher than that of commercial Pt/C, respectively.

4.
Plant Physiol Biochem ; 213: 108805, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38861819

RESUMEN

Transcription factors play crucial roles in almost all physiological processes including leaf senescence. Cell death is a typical symptom appearing in senescing leaves, which is also classified as developmental programmed cell death (PCD). However, the link between PCD and leaf senescence still remains unclear. Here, we found a WRKY transcription factor WRKY47 positively modulates age-dependent leaf senescence in Arabidopsis (Arabidopsis thaliana). WRKY47 was expressed preferentially in senescing leaves. A subcellular localization assay indicated that WRKY47 was exclusively localized in nuclei. Overexpression of WRKY47 showed precocious leaf senescence, with less chlorophyll content and higher electrolyte leakage, but loss-of-function mutants of WRKY47 delayed this biological process. Through qRT-PCR and dual luciferase reporter assays, we found that WRKY47 could activate the expression of senescence-associated genes (SAGs) and PCD-associated genes to regulate leaf senescence. Furthermore, through electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-qPCR, WRKY47 was found to bind to W-box fragments in promoter regions of BFN1 (Bifunctional Nuclease 1) and MC6 (Metacaspase 6) directly. In general, our research revealed that WRKY47 regulates age-dependent leaf senescence by activating the transcription of two PCD-associated genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Senescencia de la Planta , Factores de Transcripción , Apoptosis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Senescencia de la Planta/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
5.
Compr Rev Food Sci Food Saf ; 23(4): e13386, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38847753

RESUMEN

Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.


Asunto(s)
Glutamina , Péptidos , Glutamina/química , Péptidos/química , Humanos , Animales
6.
Cell Biosci ; 14(1): 56, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698431

RESUMEN

BACKGROUND: Acute lung injury (ALI) is strongly associated with hospitalization and mortality in patients with sepsis. Recent evidence suggests that pyroptosis mediated by NLRP3(NOD-, LRR- and pyrin domain-containing 3) inflammasome activation plays a key role in sepsis. However, the mechanism of NLRP3 inflammasome activation in sepsis-induced lung injury remains unclear. RESULTS: in this study, we demonstrated that NLRP3 inflammasome was activated by the down-regulation of heat shock protein family A member 8 (HSPA8) in Lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-treated mouse alveolar epithelial cells (AECs). Geranylgeranylacetone (GGA)-induced HSPA8 overexpression in cecum ligation and puncture (CLP) mice could significantly reduce systemic inflammatory response and mortality, effectively protect lung function, whilst HSPA8 inhibitor VER155008 aggravated this effect. The inhibition of HSPA8 was involved in sepsis induced acute lung injury by promoting pyroptosis of AECs. The down-regulation of HSPA8 activated NLRP3 inflammasome to mediate pyroptosis by promoting the degradation of E3 ubiquitin ligase S-phase kinase-associated protein 2 (SKP2). In addition, when stimulated by LPS and ATP, down-regulated SKP2 promoted pyroptosis of AECs by further attenuating ubiquitination of NLRP3. Adeno-associated virus 9-SKP2(AAV9-SKP2) could promote NLRP3 ubiquitination and degradation, alleviate lung injury and inhibit systemic inflammatory response in vivo. CONCLUSION: in summary, our study shows there is strong statistical evidence that the suppression of HSPA8 mediates alveolar epithelial pyroptosis by promoting the degradation of E3 ubiquitin ligase SKP2 and subsequently attenuating the ubiquitination of NLRP3 to activate the NLRP3 inflammasome, which provides a new perspective and therapeutic target for the treatment of sepsis-induced lung injury.

7.
Sci Total Environ ; 937: 173377, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38796025

RESUMEN

Biodiversity conservation amidst the uncertainty of climate change presents unique challenges that necessitate precise management strategies. The study reported here was aimed at refining understanding of these challenges and to propose specific, actionable management strategies. Employing a quantitative literature analysis, we meticulously examined 1268 research articles from the Web of Science database between 2005 and 2023. Through Cite Spaces and VOS viewer software, we conducted a bibliometric analysis and thematic synthesis to pinpoint emerging trends, key themes, and the geographical distribution of research efforts. Our methodology involved identifying patterns within the data, such as frequency of keywords, co-authorship networks, and citation analysis, to discern the primary focus areas within the field. This approach allowed us to distinguish between research concentration areas, specifically highlighting a predominant interest in Environmental Sciences Ecology (67.59 %) and Biodiversity Conservation (22.63 %). The identification of adaptive management practices and ecosystem services maintenance are central themes in the research from 2005 to 2023. Moreover, challenges such as understanding phenological shifts, invasive species dynamics, and anthropogenic pressures critically impact biodiversity conservation efforts. Our findings underscore the urgent need for precise, data-driven decision-making processes in the face of these challenges. Addressing the gaps identified, our study proposes targeted solutions, including the establishment of germplasm banks for at-risk species, the development of advanced genomic and microclimate models, and scenario analysis to predict and mitigate future conservation challenges. These strategies are aimed at enhancing the resilience of biodiversity against the backdrop of climate change through integrated, evidence-based approaches. By leveraging the compiled and analyzed data, this study offers a foundational framework for future research and practical action in biodiversity conservation strategies, demonstrating a path forward through detailed analysis and specified solutions.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Ecosistema
8.
Stem Cell Res ; 77: 103439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761687

RESUMEN

Hypophosphatemic vitamin D-resistant rickets typically presents in infancy or early childhood with skeletal deformities and growth plate abnormalities. In this report, the SMUSHi005-A human induced pluripotent stem cell (hiPSC) line was successfully established from the PBMCs of a female patient carrying the PHEX mutation with c.1586-1586+1 delAG. The iPSC line has been confirmed to have a normal karyotype. The displayed cells clearly exhibit characteristics similar to embryonic stem cells, expressing pluripotency markers and demonstrating the ability to differentiate into three germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mutación , Endopeptidasa Neutra Reguladora de Fosfato PHEX , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Femenino , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Línea Celular , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/patología , Diferenciación Celular , Raquitismo Hipofosfatémico/genética , Vitamina D/análogos & derivados
9.
Int Immunopharmacol ; 133: 112130, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648712

RESUMEN

Neutrophils and T lymphocytes are closely related to occurrence of immunosuppression in sepsis. Studies have shown that neutrophil apoptosis decreases and T lymphocyte apoptosis increases in sepsis immunosuppression, but the specific mechanism involved remains unclear. In the present study, we found Toll-like Receptor 2 (TLR2) and programmed death-ligand 1 (PD-L1) were significantly activated in bone marrow neutrophils of wild-type mice after LPS treatment and that they were attenuated by treatment with C29, an inhibitor of TLR2. PD-L1 activation inhibits neutrophil apoptosis, whereas programmed death protein 1 (PD-1)activation promotes apoptosis of T lymphocytes, which leads to immunosuppression. Mechanistically, when sepsis occurs, pro-inflammatory factors and High mobility group box-1 protein (HMGB1) passively released from dead cells cause the up-regulation of PD-L1 through TLR2 on neutrophils. The binding of PD-L1 and PD-1 on T lymphocytes leads to increased apoptosis of T lymphocytes and immune dysfunction, eventually resulting in the occurrence of sepsis immunosuppression. In vivo experiments showed that the HMGB1 inhibitor glycyrrhizic acid (GA) and the TLR2 inhibitor C29 could inhibit the HMGB1/TLR2/PD-L1 pathway, and improving sepsis-induced lung injury. In summary, this study shows that HMGB1 regulates PD-L1 and PD-1 signaling pathways through TLR2, which leads to immunosuppression.


Asunto(s)
Apoptosis , Antígeno B7-H1 , Proteína HMGB1 , Sepsis , Linfocitos T , Receptor Toll-Like 2 , Animales , Masculino , Ratones , Antígeno B7-H1/metabolismo , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Proteína HMGB1/metabolismo , Tolerancia Inmunológica , Lipopolisacáridos/inmunología , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Sepsis/inmunología , Sepsis/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Receptor Toll-Like 2/metabolismo
10.
Drug Metab Dispos ; 52(7): 606-613, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38670799

RESUMEN

Rifampicin (RFP) has demonstrated potent antibacterial effects in the treatment of pulmonary tuberculosis. However, the serious adverse effects on the liver intensively limit the clinical usage of the drug. Deacetylation greatly reduces the toxicity of RFP but also retains its curative activity. Here, we found that Krüppel-like factor 15 (KLF15) repressed the expression of the major RFP detoxification enzyme Cyp3a11 in mice via both direct and indirect mechanisms. Knockout of hepatocyte KLF15 induced the expression of Cyp3a11 and robustly attenuated the hepatotoxicity of RFP in mice. In contrast, overexpression of hepatic KLF15 exacerbated RFP-induced liver injury as well as mortality. More importantly, the suppression of hepatic KLF15 expression strikingly restored liver functions in mice even after being pretreated with overdosed RFP. Therefore, this study identified the KLF15-Cyp3a11 axis as a novel regulatory pathway that may play an essential role in the detoxification of RFP and associated liver injury. SIGNIFICANCE STATEMENT: Rifampicin has demonstrated antibacterial effects in the treatment of pulmonary tuberculosis. However, the serious adverse effects on the liver limit the clinical usage of the drug. Permanent depletion and transient inhibition of hepatic KLF15 expression significantly induced the expression of Cyp3a11 and robustly attenuated mouse hepatotoxicity induced by RFP. Overall, our studies show the KLF15-Cyp3a11 axis was identified as a novel regulatory pathway that may play an essential role in the detoxification of RFP and associated liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Citocromo P-450 CYP3A , Factores de Transcripción de Tipo Kruppel , Hígado , Ratones Endogámicos C57BL , Ratones Noqueados , Rifampin , Animales , Rifampin/efectos adversos , Rifampin/toxicidad , Rifampin/farmacología , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Ratones , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Antibióticos Antituberculosos/efectos adversos , Antibióticos Antituberculosos/farmacología , Antibióticos Antituberculosos/toxicidad , Proteínas de la Membrana
11.
Shock ; 62(1): 95-102, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526162

RESUMEN

ABSTRACT: Proinflammatory hyperactivation of Kupffer cells (KCs) is foremost involved in the pathogenesis of sepsis-induced liver injury. Our previous study found that stimulator of interferon genes (STING) signaling was activated in KCs in response of lipopolysaccharide (LPS) and knocking down dynamin-related protein 1 (DRP1) in KCs effectively inhibited the activation of STING signaling and the subsequent production of proinflammatory cytokines. In this study, we demonstrated that in vivo treatment with mitochondrial division inhibitor 1 (Mdivi-1), a selective inhibitor of DRP1, alleviated cecal ligation and puncture (CLP)-induced liver injury with the improvement of liver pathology and function. Moreover, we found that STING in liver was mainly concentrated in KCs and STING signaling was significantly activated in KCs after CLP. The STING deficiency effectively ameliorated liver injury and decreased the mortality of septic mice, which were reversely worsened by the enhanced activation of STING with DMXAA. The further study showed that Mdivi-1 markedly attenuated STING signaling activation in KCs and inhibited systemic inflammatory response. Importantly, DMXAA application in CLP mice blunted Mdivi-1's liver protection effect. Taken together, our study confirmed Mdivi-1 effectively alleviated CLP-induced liver injury partially through inhibiting STING signaling activation in KCs, which provides new insights and a novel potential pharmacological therapeutic target for treating septic liver injury.


Asunto(s)
Macrófagos del Hígado , Proteínas de la Membrana , Ratones Endogámicos C57BL , Sepsis , Transducción de Señal , Animales , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Transducción de Señal/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/efectos de los fármacos , Masculino , Quinazolinonas/farmacología , Quinazolinonas/uso terapéutico , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/lesiones , Dinaminas/metabolismo , Dinaminas/antagonistas & inhibidores
12.
Int J Biol Macromol ; 264(Pt 1): 130476, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428761

RESUMEN

A whole-cell biocatalyst was developed by genetically engineering pectinase PG5 onto the cell surface of Pichia pastoris using Gcw12 as the anchoring protein. Whole-cell PG5 eliminated the need for enzyme extraction and purification, while also exhibiting enhanced thermal stability, pH stability, and resistance to proteases in vitro compared to free PG5. Magnetic resonance mass spectrometry analysis revealed that whole-cell PG5 efficiently degraded citrus pectin, resulting in the production of a mixture of pectin oligosaccharides. The primary components of the mixture were trigalacturonic acid, followed by digalacturonic acid and tetragalacturonic acid. Supplementation of citrus pectin with whole-cell PG5 resulted in a more pronounced protective effect compared to free PG5 in alleviating colitis symptoms and promoting the integrity of the colonic epithelial barrier in a mouse model of dextran sulfate sodium-induced colitis. Hence, this study demonstrates the potential of utilizing whole-cell pectinase as an effective biocatalyst to promote intestinal homeostasis in vivo.


Asunto(s)
Colitis , Poligalacturonasa , Saccharomycetales , Animales , Ratones , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Funcion de la Barrera Intestinal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Pectinas/farmacología , Pectinas/metabolismo , Suplementos Dietéticos
13.
Cell Commun Signal ; 22(1): 182, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491522

RESUMEN

BACKGROUND: Diabetic angiogenesis is closely associated with disabilities and death caused by diabetic microvascular complications. Advanced glycation end products (AGEs) are abnormally accumulated in diabetic patients and are a key pathogenic factor for diabetic angiogenesis. The present study focuses on understanding the mechanisms underlying diabetic angiogenesis and identifying therapeutic targets based on these mechanisms. METHODS: In this study, AGE-induced angiogenesis serves as a model to investigate the mechanisms underlying diabetic angiogensis. Mouse aortic rings, matrigel plugs, and HUVECs or 293T cells were employed as research objects to explore this pathological process by using transcriptomics, gene promoter reporter assays, virtual screening and so on. RESULTS: Here, we found that AGEs activated Wnt/ß-catenin signaling pathway and enhanced the ß-catenin protein level by affecting the expression of ß-catenin degradation-related genes, such as FZDs (Frizzled receptors), LRPs (LDL Receptor Related Proteins), and AXIN1. AGEs could also mediate ß-catenin Y142 phosphorylation through VEGFR1 isoform5. These dual effects of AGEs elevated the nuclear translocation of ß-catenin and sequentially induced the expression of KDR (Kinase Insert Domain Receptor) and HDAC9 (Histone Deacetylase 9) by POU5F1 and NANOG, respectively, thus mediating angiogenesis. Finally, through virtual screening, Bioymifi, an inhibitor that blocks VEGFR1 isoform5-ß-catenin complex interaction and alleviates AGE-induced angiogenesis, was identified. CONCLUSION: Collectively, this study offers insight into the pathophysiological functions of ß-catenin in diabetic angiogenesis.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Animales , Humanos , Ratones , Angiogénesis , beta Catenina/metabolismo , Histona Desacetilasas/metabolismo , Fosforilación , Proteínas Represoras/metabolismo , Regulación hacia Arriba , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vía de Señalización Wnt
14.
Food Funct ; 15(7): 3583-3599, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38469921

RESUMEN

Lactobacillus probiotics exert their effects in a strain-specific and metabolite-specific manner. This study aims to identify lactobacilli that can effectively enhance the intestinal barrier function both in vitro and in vivo and to investigate the underlying metabolite and molecular mechanisms involved. Nine Lactobacillus isolates were evaluated for their ability to enhance the IPEC-J2 cellular barrier function and for their anti-inflammatory and anti-apoptotic effects in IPEC-J2 cells after an enterotoxigenic Escherichia coli challenge. Of the nine isolates, L. plantarum T10 demonstrated significant advantages in enhancing the cellular barrier function and displayed anti-inflammatory and anti-apoptotic activities in vitro. The bioactivities of L. plantarum T10 were primarily attributed to the production of exopolysaccharides, which exerted their effects through the TLR-mediated p38 MAPK pathway in ETEC-challenged IPEC-J2 cells. Furthermore, the production of EPS by L. plantarum T10 led to the alleviation of dextran sulfate sodium-induced colitis by reducing intestinal damage and enhancing the intestinal barrier function in mice. The EPS is classified as a heteropolysaccharide with an average molecular weight of 23.0 kDa. It is primarily composed of mannose, glucose, and ribose. These findings have practical implications for the targeted screening of lactobacilli used in the production of probiotics and postbiotics with strain-specific features of exopolysaccharides.


Asunto(s)
Infecciones por Escherichia coli , Lactobacillus plantarum , Probióticos , Animales , Ratones , Mucosa Intestinal/metabolismo , Funcion de la Barrera Intestinal , Infecciones por Escherichia coli/metabolismo , Lactobacillus , Antiinflamatorios/metabolismo
15.
Stem Cell Res ; 76: 103357, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412658

RESUMEN

INF2 mutations cause Charcot-Marie-Tooth disease (CMT), and /or focal segmental glomerulosclerosis (FSGS) in an autosomal dominant inheritance mode, whose underlying mechanism remainsunclear. Here, we report the generation of an iPSC line from a female patient with CMT and FSGS. The iPSC line from the patient's PBMCscarried aheterozygous INF2 deletion mutation (c.315_323delGCGCGCCGT) within the conserved E2. This line exhibited a normal karyotype, high expression of pluripotency markers, and trilineage differentiation potential. This line can be used to dissect the complex pathomechanism through further induction of differentiation into related cells and as a drug screening tool for INF2-associated diseases.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Glomeruloesclerosis Focal y Segmentaria , Células Madre Pluripotentes Inducidas , Humanos , Femenino , Glomeruloesclerosis Focal y Segmentaria/genética , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Forminas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación
16.
Biochem Genet ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347290

RESUMEN

Fanconi anemia (FA) is the predominant hereditary syndrome of bone marrow failure (BMF), distinguished by impairments in DNA repair mechanisms. The deficiency in the FANC pathway, which governs DNA repair and replication rescue, results in aberrant responses to DNA damage in individuals with FA. The objective of this study is to examine the involvement of the FANC core complex in BMF and ascertain nucleolar homeostasis-related genes by conducting transcriptome analysis on primary hematopoietic stem cells obtained from FA patients with FANCA and FANCC variants. In the present study, we analyzed scRNA-seq data obtained from both healthy donors and individuals diagnosed with FA in order to investigate the phenomenon of cell-cell communication. Through the implementation of trajectory analysis, the differentiation pathways of several progenitor cell types, such as HSC cells transitioning into LMPP, N, M, B-prog, and E cells, were elucidated. Moreover, by scrutinizing the inferred interactions, notable disparities in cell-cell communication were observed between FA patients and their healthy counterparts. Our analysis has unveiled heightened interactions involving TNFSF13B, MIF, IL16, and COL4A2 in patients with FA. Furthermore, we have developed a prognostic model for predicting the outcome of acute myeloid leukemia (AML) which has exhibited remarkable predictive precision, with an AUC exceeding 0.83 at the 3- and 5-year intervals following the baseline assessment. In summary, the prognostic model that has been developed provides a valuable instrument for forecasting outcomes of AML by utilizing the genes identified through both single-cell and bulk transcriptome analyses.

17.
Microbiol Spectr ; 12(3): e0136523, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315030

RESUMEN

Hepatitis B virus (HBV) may directly infect human podocytes (HPCs). However, the mechanism of direct infection is unclear. We found that HPCs express sodium taurocholate cotransporting polypeptide (NTCP), a specific receptor for HBV entry into hepatocytes. Thus, we investigated whether NTCP mediates HBV infection and damage in HPCs and further clarified the specific mechanism. We constructed shRNA-NTCP1,2, shRNA-NC, WT-NTCP, and MUT-NTCP and transfected them into HPCs. HPCs were infected with HBV, and HBV infection markers were detected by enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR (RT-qPCR). The functional changes in HPCs were detected by Transwell migration and scratch assays, apoptosis was evaluated by flow cytometry (FCM), and podocytoskeletal proteins (nephrin, CD2AP, and synaptopodin) were determined by western blotting (WB). Compared with the control HPCs, HPCs infected with HBV showed increased levels of HBV infection markers and apoptosis along with decreased podocytoskeletal protein expressions, cell vitality, proliferation, and migration. Compared with the HPCs infected with HBV, the HPCs transfected with HBV + shRNA-NTCP, and HBV + MUT-NTCP showed decreased levels of HBV infection markers and apoptosis along with increased podocytoskeletal protein expressions, cell vitality, proliferation, and migration; the opposite effects were observed in the HPCs transfected with HBV + WT-NTCP. Overall, the changes to NTCP affected the susceptibility of HPCs to HBV and modulated HPC damage and repair. NTCP can mediate direct HBV infection and damage human podocytes, and the NTCP 157-165 locus is the main site of HBV entry. The findings provide a new target and theoretical basis for HBV-associated glomerulonephritis. IMPORTANCE: This study identified for the first time that sodium taurocholate cotransporting polypeptide (NTCP) can mediate HBV direct infection and damage to human podocytes, and the NTCP157-165 locus is the main HBV entry site. The findings provide theoretical support for the pathogenesis of direct infection of HBV with kidney tissue. The findings provide a new target and theoretical basis for the treatment of HBV-related glomerulonephritis (HBV-GN). Blocking NTCP is a new target for the treatment of HBV-GN. We found that tacrolimus, a calcineurin inhibitor that blocks NTCP, can effectively treat HBV-GN. This study also provides a theoretical basis for the effective and safe treatment of immunosuppressant tacrolimus for HBV-GN.


Asunto(s)
Glomerulonefritis , Hepatitis B , Podocitos , Simportadores , Humanos , Virus de la Hepatitis B/genética , Tacrolimus/metabolismo , Podocitos/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , ARN Interferente Pequeño
18.
J Perianesth Nurs ; 39(1): 79-81, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37855764

RESUMEN

PURPOSE: Tonsillotomy (TT) is a new and popular method with partial resection of the tonsils. Dexamethasone is often used during surgery for its anti-inflammatory, antiemetic, and analgesic properties. In this study, we aimed to explore the effect of systemic steroids use on postoperative vomiting, pain, and bleeding in TT. DESIGN: A randomized controlled trial. METHODS: We enrolled 240 children aged 2 to 18 years who had undergone TT or adenotonsillotomy at our center from July 2020 to July 2021. Dexamethasone or 0.9% normal saline was administered before the start of surgery. Postoperative hemorrhage, vomiting, and nausea were recorded and compared between groups. FINDINGS: The dexamethasone group had a 2.5% (3/119) rate of postoperative bleeding, while the rate was 1.6% (2/119) in the control group. No patients required multiple operations for control of bleeding. The degree of postoperative pain (2.1 ± 0.5 vs 3.4 ± 0.9) and the occurrence of postoperative nausea (21% vs 31.9%), as well as vomiting (15% vs 24.4%) in the dexamethasone group, was significantly lower compared with the placebo group. CONCLUSIONS: The rate of postoperative bleeding between the dexamethasone group and the control group had no significant difference, suggesting the high safety of dexamethasone use in TT. Dexamethasone use in TT improved postoperative pain, nausea, and vomiting significantly.


Asunto(s)
Dexametasona , Dolor Postoperatorio , Náusea y Vómito Posoperatorios , Niño , Humanos , Analgésicos/uso terapéutico , Antieméticos/uso terapéutico , Dexametasona/uso terapéutico , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Náusea y Vómito Posoperatorios/epidemiología , Náusea y Vómito Posoperatorios/prevención & control , Náusea y Vómito Posoperatorios/tratamiento farmacológico , Preescolar , Adolescente , Tonsilectomía/efectos adversos
19.
Molecules ; 28(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005245

RESUMEN

A facile and efficient method has been developed for the synthesis of C3-difluoromethyl carbinol-containing imidazo[1,2-a]pyridines at room temperature via the HFIP-promoted Friedel-Crafts reaction of difluoroacetaldehyde ethyl hemiacetal and imidazo[1,2-a]pyridines. This strategy could be applied to the direct C(sp2)-H hydroxydifluoromethylation of imidazo[1,2-a]pyridines and afford a series of novel difluoromethylated carbinols in good to satisfactory yields with 29 examples. Furthermore, gram-scale and synthetic transformation experiments have also been achieved, demonstrating its potential applicable value in organic synthesis. This green protocol has several advantages, including being transition metal- and oxidant-free, being carried out at room temperature, having high efficiency, and having a wide substrate scope.

20.
Int Immunopharmacol ; 124(Pt A): 110867, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37660597

RESUMEN

Keratin 7 (Krt7) is a member of the keratin family and is primarily involved in cytoskeleton composition. It has been shown that Krt7 is able to influence its own remodeling and interactions with other signaling molecules via phosphorylation at specific sites unique to Krt7. However, its molecular mechanism in acute lung injury (ALI) remains unclear. In this study, differential proteomics was used to analyze lung samples from the receptor for advanced glycation end products (RAGE)-deficient and (wild-type)WT-septic mice. We screened for the target protein Krt7 and identified Ser53 as the phosphorylation site using mass spectrometry (MS), and this phosphorylation further triggered the deformation and disintegration of Desmoplakin (Dsp), ultimately leading to epithelial barrier dysfunction. Furthermore, we demonstrated that in sepsis, mDia1/Cdc42/p38 MAPK signaling activation plays a role in septic lung injury. We also explored the mechanism of alveolar dysfunction of the Krt7-Dsp complex in the epithelial cell barrier. In summary, the present findings increase our understanding of the pathogenesis of septic acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Desmoplaquinas/metabolismo , Pulmón/patología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Sepsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA